10,000 meters: 1,000 meters in every kilometer.
Answer:
F_n = 5.65E-11 N
d = 1.20682E-31 m
Explanation:
F = 3.8E-09 N
where
m = Mass of electron = 9.109E−31 kilograms
G = Gravitational constant = 6.67E-11 m³/kgs²
x = Distance between them
For
Dividing the above equations we get
F_n = 5.65E-11 N
d = 1.20682E-31 m
It’s not flat because how can we be 3D when our planet is flat
Answer:
<em>The velocity after the collision is 2.82 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of two bodies, then the total momentum is the sum of the individual momentums:
If a collision occurs and the velocities change to v', the final momentum is:
Since the total momentum is conserved, then:
P = P'
Or, equivalently:
If both masses stick together after the collision at a common speed v', then:
The common velocity after this situation is:
There is an m1=3.91 kg car moving at v1=5.7 m/s that collides with an m2=4 kg cart that was at rest v2=0.
After the collision, both cars stick together. Let's compute the common speed after that:
The velocity after the collision is 2.82 m/s