I believe that the answer to the question provided above are the following;
x = 29.8410
y = 16.6794
z = -1.2642
Hope my answer would be a great help for you. If you have more questions feel free to ask here at Brainly.
Answer:
Explanation:
The relation between time period of moon in the orbit around a planet can be given by the following relation .
T² = 4 π² R³ / GM
G is gravitational constant , M is mass of the planet , R is radius of the orbit and T is time period of the moon .
Substituting the values in the equation
(.3189 x 24 x 60 x 60 s)² = 4 x 3.14² x ( 9380 x 10³)³ / (6.67 x 10⁻¹¹ x M)
759.167 x 10⁶ = 8.25 x 10²⁰ x 39.43 / (6.67 x 10⁻¹¹ x M )
M = .06424 x 10²⁵
= 6.4 x 10²³ kg .
Answer:
A. The brakes used a coil system to convert the kinetic energy into potential energy stored in the brakes
Explanation:
Based on the law of conservation of energy, the brakes used a coil system to convert the kinetic energy into potential energy stored in the brakes.
The law of conservation of energy states that energy is neither created nor destroyed in a system but it is transformed from one form to another.
As the airplane slows down, the kinetic energy which is presented in the motion of the plane is gradually converted to potential energy.
The potential energy is the energy due to the position of a body.
maximum speed of cheetah is

speed of gazelle is given as

Now the relative speed of Cheetah with respect to Gazelle


now the relative distance between Cheetah and Gazelle is given initially as "d"
now the time taken by Cheetah to catch the Gazelle is given as

so by rearranging the terms we can say


so above is the relation between all given variable