Answer:

Explanation:
B.

BALANCED. 7C, 16H, and 22O on each side of equation.
A.

NOT BALANCED. 7C on left and 6C on right.
C.

NOT BALANCED. 16H on left and 10H on right.
D.

NOT BALANCED. 7C on left and 14C on right.
Na⁺¹₃P⁺⁵O⁻²₄
+1*3 + (+5) + (-2*4) = 0
Answer:
1.126 x 10^22
Explanation:
pV = nRT
7.53 x 10 = n x 8.31 x 485
n = (7.53 x 10) / (8.31 x 485) = 0.0187 moles
M = n x Avogadros number
0.0187 x 6.02 x 10^23 = 1.126 x 10^22
Answer:
bonding molecular orbital is lower in energy
antibonding molecular orbital is higher in energy
Explanation:
Electrons in bonding molecular orbitals help to hold the positively charged nuclei together, and they are always lower in energy than the original atomic orbitals.
Electrons in antibonding molecular orbitals are primarily located outside the internuclear region, leading to increased repulsions between the positively charged nuclei. They are always higher in energy than the parent atomic orbitals.
The best answer for the question above would be the chloroflourocarbons or the CFCs. These chloroflourocarbons or CFCs are the ones responsible for the depletion of the ozone - which leads to leaving a hole in its layer. These gases eat out the ozone layer and allows harmful UV rays of the sun to come in the Earth.