the correct IUPAC name of the compound is 1-Butanal.
<h3>What are IUPAC names?</h3>
It is a system of naming organic compounds based on the longest carbon-to-carbon single bonds. It does not matter whether these longest chains are continuous or in a ring.
Thus, when the compound with the chemical formula, CH3-CH2-CH2CHO is considered. The longest carbon-to-carbon chain is 4. The 1st carbon carries a functional group known as an aldehyde.
Aldehydes are equipped with the carbonyl group and have the general formula R−CH=O. They are also sometimes referred to as formyl.
Aldehydes are named after their parent alkane chains with a slight modification. The 'e' is replaced with 'al'
The aldehyde in this case has four carbons. This means that the parent alkane is Butane. Therefore, the name of the compound will be 1-Butanal.
More on IUPAC names can be found here: brainly.com/question/16631447
#SPJ1
Answer:
1 mole of ferric contains 2 moles of iron,and 12 moles of oxygen atoms, and three moles of sulphate ions
Direct electron transfer from a a singlet reduced species to a triplet oxidizing species is quantum-mechanically forbidden.
<h3><u>Transfer from singlet to triplet:</u></h3>
- Either an excited singlet state or an excited triplet state will occur when an electron in a molecule with a singlet ground state is stimulated (through radiation absorption) to a higher energy level.
- All electron spins in a molecule electronic state known as a singlet are coupled.
- In other words, the ground state electron and the stimulated electron's spin are still coupled (a pair of electrons in the same energy level must have opposite spins, per the Pauli exclusion principle).
- The excited electron and ground state electron are parallel in a triplet state because they are no longer coupled (same spin).
- It is less likely that a triplet state would arise when the molecule absorbs radiation since excitation to a triplet state necessitates an additional "forbidden" spin transfer.
To view more questions on quantum mechanism, refer to:
brainly.com/question/13639384
#SPJ4
The empirical formula, <span>C<span>H2</span></span>, has a relative molecular mass of
<span>1×<span>(12.01)</span>+2×<span>(1.01)</span>=14.04</span>
This means that the empirical formula must be multiplied by a factor to bring up its molecular weight to 70. This factor can be calculated as the ratio of the relative masses of the molecular and empirical formulas
<span><span>7014.04</span>=4.98≈5</span>
Remember that subscripts in molecular formulas must be in whole numbers, hence the rounding-off. Finally, the molecular formula is
<span><span>C<span>1×5</span></span><span>H<span>2×5</span></span>=<span>C5</span><span>H<span>10</span></span></span>
Answer:
A combination is certainly possible, but you should not take formal charges so literally
Normally, when a covalent bond is found, the two atoms both bring in one electron. As you identify correctly, in the case of nitric acid that would not be possible completely. If you draw the different possible resonance structures, the most likely structure has a single bond between the nitrogen and an oxygen where the oxygen has 3 lone pairs and both electrons in the bond are donated by the nitrogen. This makes the nitrogen "positive" and that oxygen "negative", but in fact the electrons move more freely in the molecule and charges are more distributed. You will not be able to find "the negatively charged" oxygen atom.
Explanation:
<h2>
<u>PLEASE</u><u> </u><u>MARK</u><u> ME</u><u> BRAINLIEST</u><u> AND</u><u> FOLLOW</u><u> M</u><u> E</u><u> LOTS</u><u> OF</u><u> LOVE</u><u> FROM</u><u> MY</u><u> HEART</u><u> AND</u><u> SOUL</u><u> DARLING</u><u> </u><u>TEJASWI </u><u> HERE</u><u> ❤️</u></h2>