Evaporation, distillation, filtration and chromatography
Hope it help you, have a nice day
Answer:
3.01 × 10^24 particles
Explanation:
According to Avagadro, in one mole of a substance, there are 6.02 × 10^23 atoms or particles.
Using the formula: N = n × NA
Where;
N= number of particles or atoms
n = number of moles
NA = Avagadro's constant or number
This means that for 5 moles of a substance, there will be:
5 × 6.02 × 10^23
= 30.1 × 10^23
= 3.01 × 10^24 particles

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an atom or molecule making a transition from a high energy state to a lower energy state. The photon energy of the emitted photon is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.
Answer:
Genetic equilibrium is the state in which allele frequencies do
not change in a generation over generation.
Explanation:
Genetic equilibrium can be described as a situation which arises when a certain allele or genotype remains constant for a species generation over generations. Genetic equilibrium can be maintained if no external factors like mutations affect the population of the species. The phenomenon of natural selection and evolution need to be stopped if a genetic equilibrium is to be maintained. Hardy-Weinberg theorem is the mathematical depiction of genetic equilibrium.
<u>Answer:</u> The mass of solution that the chemistry student should use is 23.4 grams
<u>Explanation:</u>
We are given:
Available mass of isopropenylbenzene = 120. g
Amount of isopropenylbenzene needed by chemistry student = 10.00 g
42.7 % (w/w) solution of isopropenylbenzene.
This means that 42.7 grams of isopropenylbenzene is present in 100 grams of solution.
To calculate the mass of solution for given needed of isopropenylbenzene, we apply unitary method:
For 42.7 grams of isopropenylbenzene, the amount of solution needed is 100 grams
So, for 10.00 grams of isopropenylbenzene, the amount of solution needed will be = 
Hence, the mass of solution that the chemistry student should use is 23.4 grams