Answer:
1⅓ inches
Step-by-step explanation:
Area = side² = x²
9(x²) = 16
x² = 16/9
x = 4/3 inches or 1⅓ inches
Given Information:
Area of rectangle = 16 square feet
Required Information:
Least amount of material = ?
Answer:
x = 4 ft and y = 4 ft
Step-by-step explanation:
We know that a rectangle has area = xy and perimeter = 2x + 2y
We want to use least amount of material to design the sandbox which means we want to minimize the perimeter which can be done by taking the derivative of perimeter and then setting it equal to 0.
So we have
xy = 16
y = 16/x
p = 2x + 2y
put the value of y into the equation of perimeter
p = 2x + 2(16/x)
p = 2x + 32/x
Take derivative with respect to x
d/dt (2x + 32/x)
2 - 32/x²
set the derivative equal to zero to minimize the perimeter
2 - 32/x² = 0
32/x² = 2
x² = 32/2
x² = 16
x =
ft
put the value of x into equation xy = 16
(4)y = 16
y = 16/4
y = 4 ft
So the dimensions are x = 4 ft and y = 4 ft in order to use least amount of material.
Verification:
xy = 16
4*4 = 16
16 = 16 (satisfied)
3 pounds for $40.99. For this deal you’re paying $13.66 per pound.
Answer: option c or 3 because you gotta take out the 6 so u do -6 which left is negative and right is positive and then get rid of the +2 exponent so up is positive and down is negative so you move -2 which is down.
Step-by-step explanation:
Answer:
A and B
Step-by-step explanation:
You can take a look at a unit circle to find the solution to this problem (see below).

Hope this helps!