A classroom has ten students. Three students are freshman, two are sophomores, and five are juniors. Three students are randomly
selected (without replacement) to participate in a survey. Consider the following events: A = Exactly 1 of the three selected is a freshman B = Exactly 2 of the three selected are juniors Find the following probability. If needed, round to FOUR decimal places. Pr(A∩B) = ___________
We have a total of ten student, and three students are randomly selected (without replacement) to participate in a survey. So, the total number of subsets of size 3 is given by 10C3=120.
On the other hand A=Exactly 1 of the three selected is a freshman. We have that three students are freshman in the classroom, we can form 3C1 different subsets of size 1 with the three freshman; besides B=Exactly 2 of the three selected are juniors, and five are juniors in the classroom. We can form 5C2 different subsets of size 2 with the five juniors. By the multiplication rule the number of different subsets of size 3 with exactly 1 freshman and 2 juniors is given by
It took him 12 mins to bike the trail because it implies that you bike faster than jogging so the time should be shorter hence bike twice as fast as jogging
Answer: A golfer finds himself in two different situations on different holes. On the second hole he is 120 m from the green and wants to hit the ball 90 m