Answer:0.58 m
Explanation:
The initial velocity of the ball is u = 2.0 m/s
The height of the table is, h = 1.0 m
The ball falls in vertical direction under acceleration due to gravity.
Time taken for ball to hit the floor:
h= ut + 0.5gt² ( from the equation of motion)
1.0 m=2.0 m/s × t+0.5 × 9.8 m/s²× t²
Solving this for t,
t = 0.29 s ( we have neglected the negative value of t)
In the same time, the ball would cover a horizontal distance of :
s = u t
⇒s = 2.0 m/s×0.29 s = 0.58 m
Thus, the landing spot is 0.58 m away from the table.
I think the answer should be: “100.4957 N”
Hello!
This is an example of an inelastic collision, where the two objects "stick" to each other after their collision. (The Goalkeeper CATCHES the puck).
We can write out the conservation of momentum formula:
m1vi + m2vi = m1vf + m2vf
Let:
m1 = mass of puck
m2 = mass of the goalkeeper
We know that the initial velocity of the goalkeeper is 0, so:
m1vi + m2(0) = m1vf + m2vf
m1vi = m1vf + m2vf
The final velocities will be the same, so:
m1vi = (m1 + m2)vf
Plug in the given values:
(0.16)(40)/ (0.16 + 120) = vf ≈ 0.0533 m/s
Using the equation for momentum:
p = mv
The object with the LARGER mass will have the greater momentum. Thus, the Goalkeeper has the largest momentum as p = mv; a greater mass correlates to a greater momentum since the velocity is the same between the two objects. The puck would have a momentum of p = (.16)(0.0533) = 0.008528 kgm/s, whereas the goalkeeper would have a momentum of
p = (120)(0.0533) = 6.396 kgm/s.
As per Einstein's relation of relativity

here we know that


now here we know that

now from above equation mass of the muon is given as


now for the momentum of muon we can use



so above is the momentum of muon
Answer:
The given symbol is of DC power source
Option A is incorrect because in ammeter a letter A is written inside a circle.
Similarly, Option B is incorrect because in voltmeter V is written inside a circle
Option C and D are incorrect
Option E is correct it is a DC power source.
It is a Dc power source the left hand side is positive side and the right line is the negative side.