Kinetic energy = (1/2) (mass) x (speed)²
At 7.5 m/s, the object's KE is (1/2) (7.5) (7.5)² = 210.9375 joules
At 11.5 m/s, the object's KE is (1/2) (7.5) (11.5)² = 495.9375 joules
The additional energy needed to speed the object up from 7.5 m/s
to 11.5 m/s is (495.9375 - 210.9375) = <em>285 joules</em>.
That energy has to come from somewhere. Without friction, that's exactly
the amount of work that must be done to the object in order to raise its
speed by that much.
A silica-rich igneous rock that has large crystals and makes up much of the continental crust is called granite. These rocks are usually pink, gray or white in color depending on the minerals found on the rock. Generally, granite would have a range of 20% to 60% by volume of quartz and a minimum of 35% feldspar. This rock is a result from volcanic arcs and from the collision of continental masses. Due to its abundance, it has been used in a number of applications. It is used as an aggregate and filler in roading and construction industries. It is also cut and polished to be used in foyers, building facings, bench counters and tops.
Carbon dioxide
Helium
Argon
Hydrogen
It is the same if a white father and a white mother give birth to a black kid, so the mother accuses the father for having (let's say mating) with a black women.
The correct answer to the question is : D) 352.6 m/s.
CALCULATION :
As per the question, the temperature is increased from 30 degree celsius to 36 degree celsius.
We are asked to calculate the velocity of sound at 36 degree celsius.
Velocity of sound is dependent on temperature. More is the temperature, more is velocity of sound.
The velocity at this temperature is calculated as -
V = 331 + 0.6T m/s
= 331 + 0.6 × 36 m/s
= 331 + 21.6 m/s
= 352.6 m/s.
Here, T denotes the temperature of the surrounding.
Hence, velocity of the sound will be 352.6 m/s.