The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
Paracetamol is grouped within the 'painkillers' category.
Force is defined as the rate of change of momentum.
The initial amount of momentum is

because water stops when it hit the wall total change of momentum must be

.
Now let's calculate the force.

We need to find

. This is the amount of water hiting the wall per second.

Our final formula would be:

And now we can calculate the answer:
Explanation:
a. KE at bottom = PE at top
½ mv² = mgh
v = √(2gh)
v = √(2 × 9.8 m/s² × 20.0 m)
v = 19.8 m/s
b. Work by friction = PE at top
mgμ d = mgh
d = h / μ
d = 20.0 m / 0.210
d = 95.2 m