1/3 chance to pick a boy 2/3 chance to pick a girl
Answer:
<h2>5, 7, 11</h2>
Step-by-step explanation:
A prime number is a natural number greater than 1 that cannot be formed by multiplying two smaller natural numbers.
A prime number has only two divisors: 1 and itself.
Therefore, the prime numbers are:
5, 7 and 11.
12 is not a prime because 12 = 2 × 6 = 3 × 4.
12 has six divisors: 1, 2, 3, 4, 6 and 12.
Answer:
p ∈ IR - {6}
Step-by-step explanation:
The set of all linear combination of two vectors ''u'' and ''v'' that belong to R2
is all R2 ⇔
And also u and v must be linearly independent.
In order to achieve the final condition, we can make a matrix that belongs to
using the vectors ''u'' and ''v'' to form its columns, and next calculate the determinant. Finally, we will need that this determinant must be different to zero.
Let's make the matrix :
![A=\left[\begin{array}{cc}3&1&p&2\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%261%26p%262%5Cend%7Barray%7D%5Cright%5D)
We used the first vector ''u'' as the first column of the matrix A
We used the second vector ''v'' as the second column of the matrix A
The determinant of the matrix ''A'' is

We need this determinant to be different to zero


The only restriction in order to the set of all linear combination of ''u'' and ''v'' to be R2 is that 
We can write : p ∈ IR - {6}
Notice that is
⇒


If we write
, the vectors ''u'' and ''v'' wouldn't be linearly independent and therefore the set of all linear combination of ''u'' and ''b'' wouldn't be R2.
The zero product property tells us that if the product of two or more factors is zero, then each one of these factors CAN be zero.
For more context let's look at the first equation in the problem that we can apply this to:

Through zero property we know that the factor

can be equal to zero as well as

. This is because, even if only one of them is zero, the product will immediately be zero.
The zero product property is best applied to
factorable quadratic equations in this case.
Another factorable equation would be

since we can factor out

and end up with

. Now we'll end up with two factors,

and

, which we can apply the zero product property to.
The rest of the options are not factorable thus the zero product property won't apply to them.
16: B; irrational number, real
17: C; whole, integer, rational, real
18: B; real, rational, integer