Law of universal gravitation:
F = GMm/r²
F = gravitational force, G = gravitational constant, M & m = masses of the objects, r = distance between the objects
F is proportional to both M and m:
F ∝ M, F ∝ m
F is proportional to the inverse square of r:
F ∝ 1/r²
Calculate the scaling factor of F due to the change in M:
k₁ = 2M/M = 2
Calculate the scaling factor of F due to the change in m:
k₂ = 2m/m = 2
Calculate the scaling factor of F due to the change in r:
k₃ = 1/(4r/r)² = 1/16
Multiply the original force F by the scaling factors to obtain the new force:
Fk₁k₂k₃
= F(2)(2)(1/16)
= F/4
Answer:
what language is that
Explanation:
i don't understand the languge u used please can you change it
Answer:
During heat flow, much of the energy is dissipated and cannot be used for useful work.
Explanation:
Which of the following statements is true?
During heat flow, much of the energy is lost.
During heat flow, energy is converted to matter.
During heat flow, much of the energy is dissipated and cannot be used for useful work.
The circular lines you see on the chart are isobars, which join areas of the same barometric pressure.
Looking at the force-time graph, wouldn't the force be integral fdt between 0 and 10s, a sort of "smoothed out pulse" ? And it looks like a familiar bell shaped curve. doesn't that produce a turning effect/torque and isn't there something about a circular analogue to F=ma in newtonian linear mechs ???
Looks like a difficult question for 5 points