1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gavmur [86]
3 years ago
6

Two tugboats pull a disabled supertanker. Each tug exerts a constant force of 2.20×106 N , one at an angle 15.0 ∘ west of north,

and the other at an angle 15.0 ∘ east of north, as they pull the tanker a distance 0.810 km toward the north.
What is the total work done by the two tugboats on the supertanker?
Physics
1 answer:
Darina [25.2K]3 years ago
5 0

Answer:

The total work done by the two tugboats on the supertanker is 3.44 *10^9 J

Explanation:

The force by the tugboats acting on the supertanker is constant and the displacement of the supertanker is along a straight line.

The angle between the 2 forces and displacement is ∅ = 15°.

First we have to calculate the work done by the individual force and then we can calculate the total work.

The work done on a particle by a constant force F during a straight line displacement s is given by following formula:

W = F*s

W = F*s*cos∅

With ∅ = the angles between F and s

The magnitude of the force acting on the supertanker is F of tugboat1 = F of tugboat 2 = F = 2.2 * 10^6 N

The total work done can be calculated as followed:

Wtotal = Ftugboat1 s * cos ∅1 + Ftugboat2 s* cos ∅2

Wtotal = 2Fs*cos∅

Wtotal = 2*2.2*10^6 N * 0.81 *10³ m s *cos15°

Wtotal = 3.44*10^9 Nm = <u>3.44 *10^9 J</u>

<u />

The total work done by the two tugboats on the supertanker is 3.44 *10^9 J

You might be interested in
Most nuclear waste in the US is ____.
solmaris [256]
The most waste is Yucca mtn. in Nevada
<span />
8 0
3 years ago
Read 2 more answers
9. Consider the elbow to be flexed at 90 degrees with the forearm parallel to the ground and the upper arm perpendicular to the
mojhsa [17]

Answer:

Moment about SHOULDER  ∑ τ = 3.17 N / m,

Moment respect to ELBOW   Στ= 2.80 N m

Explanation:

For this exercise we can use Newton's second law relationships for rotational motion

         ∑ τ = I α

   

The moment is requested on the elbow and shoulder at the initial instant, just when the movement begins.

They indicate the angular acceleration, for which we must look for the moments of inertia of the elements involved

The mass of the forearm with the included weight is approximately 2.3 kg, with a length of about 50cm

Moment about SHOULDER

          ∑ τ = I α

           I = I_forearm + I_sphere

the forearm can be approximated as a fixed bar at one end

            I_forearm = ⅓ m L²

the moment of inertia of the mass in the hand, let's approach as punctual

            I_mass = m L²

we substitute

           ∑ τ = (⅓ m L² + M L²) α

let's calculate

          ∑ τ = (⅓ 2.3 0.5² + 0.5 0.5²) 10

           ∑ τ = 3.17 N / m

Moment with respect to ELBOW

In this case, the arm exerts an upward force (muscle) that is about 3 cm from the elbow

         Στ = I α

         I = I_ forearm + I_mass

         I = ⅓ m (L-0.03)² + M (L-0.03)²

         

let's calculate

        i = ⅓ 2.3 0.47² + 0.5 0.47²

        I = 0.2798 Kg m²

        Στ = 0.2798 10

        Στ= 2.80 N m

3 0
3 years ago
A 0.20 kg baseball is traveling at 40 m/s toward the batter. The ball is hit by the bat with a force of 200N, and is
Paraphin [41]

Answer:

Time, t = 0.015 seconds.

Explanation:

Given the following data;

Mass, m = 0.2kg

Force, F = 200N

Initial velocity, u = 40m/s

Final velocity, v = 25m/s

To find the time;

Ft = m(v - u)

Time, t = m(v - u)/f

Substituting into the equation, we have;

Time, t = 0.2(25 - 40)/200

Time, t = 0.2(-15)/200

Time, t = 3/200

Time, t = 0.015 seconds.

Note: We ignored the negative sign because time can't be negative.

8 0
3 years ago
Use the mass spectrum of europium to determine the atomic mass of europium. where the peak representing eu-151 has an exact mass
slavikrds [6]

Answer: The atomic mass of a Europium atom is 151.96445 amu.

From the given information:

Percent intensity is 91.61% of Europium atom of molecular weight 150.91986 amu.

Percent intensity is 100.00% of Europium atom of molecular weight 152.92138 amu.

Abundance of Eu-151 atom:

X_{Eu-151}=\frac{0.9161}{0.9161+1.000}=0.4781

Abundance of Eu-153 atom:

X_{Eu-153}=\frac{1.000}{0.9161+1.000}=0.5219

Atomic mass of Europium atom:

A=(X_{Eu-151}\times150.91986+X_{Eu-153}\times152.92138)amu\\A=(0.4781\times150.91986+0.5219\times152.92138)amu=151.96445 amu

Therefore, the atomic mass of a Europium atom is 151.96445 amu.

3 0
3 years ago
Read 2 more answers
The layers of gas that surround the Earth
Ierofanga [76]

Answer:

Our planet is surrounded by a layer of gases called the atmosphere. ... ➢ Without our atmosphere, there would be no life on earth. ➢ Scientists divided the atmosphere into four layers according to temperature: troposphere, stratosphere, mesosphere, and thermosphere.

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • Both of the examples please.
    14·1 answer
  • What is an analogy that describes the process of electron carriers?
    7·2 answers
  • When a guitar string is plucked, in what direction does the wave travel? In what directions does the string vibrate?
    10·2 answers
  • What are the different isotopes
    6·1 answer
  • Base your answer to the question on the information below.A go-cart travels around a flat, horizontal, circular track with a rad
    13·1 answer
  • Traumatic brain injury such as a concussion results when the head undergoes a very large acceleration. Generally an acceleration
    11·1 answer
  • As a woman walks, her entire weight is momentarily placed on one heel of her high-heeled shoes. Calculate the pressure exerted o
    7·1 answer
  • As best you can, describe how we can tell the age of the Earth and rocks found on it.
    7·1 answer
  • Thinking about planck's law, which star would give off the most orange light?
    7·1 answer
  • A comet of mass 1.20 × 10¹⁰kg moves in an elliptical orbit around the Sun. Its distance from the Sun ranges between 0.500 AU and
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!