Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
To solve this problem it is necessary to apply the concepts related to the concept of overlap and constructive interference.
For this purpose we have that the constructive interference in waves can be expressed under the function

Where
a = Width of the slit
d = Distance of slit to screen
m = Number of order which represent the number of repetition of the spectrum
Angle between incident rays and scatter planes
At the same time the distance on the screen from the central point, would be

Where y = Represents the distance on the screen from the central point
PART A ) From the previous equation if we arrange to find the angle we have that



PART B) Equation both equations we have


Re-arrange to find a,


Answer:The train travels 105 meters after applying the brakes
Explanation:If he decelerates 1.5 every minute, then he went from 28,5 m/s, to 27.0 m/s, to 25.5 m/s, to 24.0 m/s, after 4 seconds. Add all this together and youll get 105 meters moved in 4 seconds after he hit the brakes, I dont have a notebook on me though sorry :/
Answer:
The surface gravity g of the planet is 1/4 of the surface gravity on earth.
Explanation:
Surface gravity is given by the following formula:

So the gravity of both the earth and the planet is written in terms of their own radius, so we get:


The problem tells us the radius of the planet is twice that of the radius on earth, so:

If we substituted that into the gravity of the planet equation we would end up with the following formula:

Which yields:

So we can now compare the two gravities:

When simplifying the ratio we end up with:

So the gravity acceleration on the surface of the planet is 1/4 of that on the surface of Earth.