Answer:
The radius of the curve is 9,183.67 m.
Explanation:
Given;
velocity of the jet plane, v = 600 m/s
acceleration of the jet plane, a = 4g = 4 x 9.8 m/s² = 39.2 m/s²
The radius of the curve is calculated from centripetal acceleration formula as given below;

Therefore, the radius of the curve is 9,183.67 m.
Answer: The atomic number is the number of protons in an atom, and isotopes have the same atomic number but differ in the number of neutrons. The number of protons in an atom is called its atomic number. This number is very important because it is unique for atoms of a given element. All atoms of an element have the same number of protons, and every element has a different number of protons in its atoms.
Explanation:
New substances are formed by chemical reactions. When elements react together to form compounds their atoms join to other atoms using chemical bonds. For example, iron and sulfur react together to form a compound called iron sulfide. Hopefully this will help you decide...
Answer:
α = 395 rad/s²
Explanation:
Main features of uniformly accelerated circular motion
A body performs a uniformly accelerated circular motion when its trajectory is a circle and its angular acceleration is constant (α = cte). In it the velocity vector is tangent at each point to the trajectory and, in addition, its magnitude varies uniformly.
There is tangential acceleration (at) and is constant.
at = α*R Formula (1)
where
α is the angular acceleration
R is the radius of the circular path
There is normal or centripetal acceleration that determines the change in direction of the velocity vector.
Data
R = 0.0600 m :blade radius
at = 23.7 m/s² : tangential acceleration of the blades
Angular acceleration of the blades (α)
We replace data in the formula (1)
at = α*R
23.7 = α*(0.06)
α = (23.7) / (0.06)
α = 395 rad/s²
Answer:
The correct option is 'c':electron,proton,helium nucleus
Explanation:
The De-Broglie's wavelength of particle is given by

Thus we can see that wavelength is inversely related to mass of the particle since 'h' (Plank's constant) and velocity is same for all the particles
Thus we conclude that the the lightest particle will have the most wavelength
Electron being the lightest of the 3 particles will have the largest wavelength thus the correct option is 'c'. Since electron has the largest wavelength followed by proton and the least wavelength among the 3 is of helium.