1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
3 years ago
6

Jocko the clown, whose mass is 60-Kg, stands on a skateboard. A 20-Kg ball is thrown at Jocko at 3m/s, and when he catches the b

all, he and the ball move on the skateboard. How fast do Jocko and the ball move after he catches the ball?
Physics
1 answer:
Mekhanik [1.2K]3 years ago
7 0

Answer:

The speed of the Jocko and the ball move after he catches the ball is 0.75 m/s.

Explanation:

Given that,

Mass if Jocko, m = 60 kg

Mass of the ball, m' = 20 kg

Speed of the ball, v = 3 m/s

Let V is the speed of Jocko and the ball move after he catches the ball. The momentum of the system remains conserved. Using the conservation of momentum as :

m'v'=(m+m')V\\\\V=\dfrac{m'v'}{(m+m')}\\\\V=\dfrac{20\times 3}{(60+20)}\\\\V=0.75\ m/s

So, the speed of the Jocko and the ball move after he catches the ball is 0.75 m/s.

You might be interested in
3. What is a manometer used to determine?​
Gemiola [76]

Answer:

It's used to indicate pressure

3 0
3 years ago
Read 2 more answers
30cm³ of brine of relative density 1.15 and 42cm³ of water are mixed. What is the density of the final solution​
Aleks04 [339]

Answer:

I think it's the most important part in this

7 0
3 years ago
A person travels by car from one city to another with different constant speeds between pair of cities. She drives for 36 min at
Softa [21]

 Change minutes to hrs, divide by 60:
30 min = .50 hrs
45 min = .75 hrs
12 min = .20 hrs
----------------
total + 1.45 hrs, total travel time
:

let a = average speed for the trip
:
Write a dist equation, dist = speed * time
:
80(.5) + 100(.20) + 40(.75) = 1.45a
40 + 20 + 30 = 1.45a
90 = 1.45a
a =
a = 62.069 km/h, for the entire trip
and
90 km is the total distance 

3 0
3 years ago
How you use physics in your<br> everyday life.
stepan [7]

Answer:

Explanation:

Physics gets involved in your daily life right from you wake up in the morning. The buzzing sound of an alarm clock helps you wake up in the morning as per your schedule. The sound is something that you can't see, but hear or experience. Physics studies the origin, propagation, and properties of sound

5 0
3 years ago
A 0.200-m uniform bar has a mass of 0.795 kg and is released from rest in the vertical position, as the drawing indicates. The s
aleksklad [387]

Explanation:

Since, the rod is present in vertical position and the spring is unrestrained.

So, initial potential energy stored in the spring is U_{s} = 0

And, initial potential gravitational potential energy of the rod is U_{g} = \frac{mgL}{2}.

It is given that,

       mass of the bar = 0.795 kg

            g = 9.8 m/s^{2}

           L = length of the rod = 0.2 m

Initial total energy T = \frac{mgL}{2}

Now, when the rod is in horizontal position then final total energy will be as follows.

            T = \frac{1}{2}kx^{2} + I \omega^{2}

where,    I = moment of inertia of the rod about the end = \frac{mL^{2}}{3}

Also,    \omega = \frac{\nu}{L}

where,    \nu = speed of the tip of the rod

              x = spring extension

The initial unstrained length is x_{o} = 0.1 m

Therefore, final length will be calculated as follows.

              x' = \sqrt{(0.2)^{2} + (0.1)^{2}} m

Then,  x = x' - x_{o}

          x = \sqrt{(0.2)^{2} + (0.1)^{2}} m - 0.1 m

             = 0.1236 m

       k = 25 N/m

So, according to the law of conservation of energy

       \frac{mgL}{2} = \frac{1}{2}kx^{2} + \frac{1 \times mL^{2}}{2 \times 3}(\frac{\nu}{L})^{2}

      \frac{mgL}{2} = \frac{1}{2}kx^{2} + \frac{1}{6}mv^{2}

Putting the given values into the above formula as follows.

   \frac{mgL}{2} = \frac{1}{2}kx^{2} + \frac{1}{6}mv^{2}

  \frac{0.795 kg \times 9.8 \times 0.2 m}{2} = \frac{1}{2} \times 27 N/m \times (0.1236)^{2} + \frac{1}{6} \times 0.795 \times v^{2}

          v = 2.079 m/s

Thus, we can conclude that tangential speed with which end A strikes the horizontal surface is 2.079 m/s.

7 0
3 years ago
Other questions:
  • The net force acting on a 50kg crate is 0 N. what is the crates accelratiin
    11·1 answer
  • What are 3 wave properties?
    7·2 answers
  • Mechanical (sound) waves are unable to travel through a vacuum, such as through space, but radio waves are transmitted to Earth
    14·2 answers
  • Sam is observing the velocity of a car at different times. After two hours, the velocity of the car is 50 km/h. After six hours,
    12·1 answer
  • An object accelerates at 20 m/s2. By how much does the speed change in one
    8·1 answer
  • 9. A car accelerates from 3.5 m/s to 17 m/s in 4.5 seconds. Find the acceleration of the car in m/s2.
    9·1 answer
  • An electric pump has 2kW power . How much water will it lift every minute if the height is 10 m ?
    14·1 answer
  • Identifying the factors contributing to and acting as determinant factors of health disparities during the program theory and de
    12·1 answer
  • A projectile has an initial x-velocity of 4 m/s, and an initial y-velocity of 27.7 m/s. What is the range of the projectile
    15·1 answer
  • Lillie is running. She increases her initial speed of 30 km/h to 40 km/h so she can win the race. If she takes 0.05 hours to com
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!