Two equivalent hybridized orbitals will form from the mixing of one s-orbital and one p-orbital, that is (sp) orbital.
<h3>What are orbitals?</h3>
Orbital is the place around nucleus where mostly the electrons are present. There are four types of orbitals are present, s, p, d, and f.
The orbitals that are formed by the mixing of these orbitals are called hybrid orbitals.
Thus, two equivalent hybridized orbitals will form from the mixing of one s-orbital and one p-orbital, that is (sp) orbital.
Learn more about orbitals
brainly.com/question/18914648
#SPJ4
Answer:

Explanation:
Given that
At X=0 V=Vo
At X=X1 V=0
As we know that friction force is always try to oppose the motion of an object. It means that it provide acceleration in the negative direction.
We know that



So the friction force on the box
Ff= m x a

Where m is the mass of the box.
According to the given statement Final velocity when they stick together is 8.735i^ + 11.25j^
<h3>What is collision and momentum?</h3>
The unit of momentum is kg ms -1. Momentum is a vector parameter that is influenced by the object's direction. During collisions involving objects, momentum is a relevant concept. The final velocity before a collision between two objects equals the total motion after the impact (in the absence of external forces).
<h3>Briefing:</h3>
From conservation of momentum
Initial momentum = final momentum
m u +M U =(m+M) V
2000×25 i^ +1500×30 j^ =(2000+1500) V
V = 8.735i^ + 11.25j^
Final velocity when they stick together is 8.735i^ + 11.25j^
To know more about Collide visit:
brainly.com/question/27993473
#SPJ4
The complete question is -
A 2000 kg truck is moving eastward at 25 m/s. it collides inelastically with a 1500 kg truck traveling southward at 30 m/s. they collide at the intersection. Find the direction and magnitude of velocity of the wreckage after the collision, assuming the vehicles stick together after the collision.
Answer:
A
Explanation:
absolute magnitude and luminosity vs the spectral position/ temperature
Answer: 29.17m/s^2
Explanation:
Given the following :
Velocity = 525 m/s
Time = 18 seconds
Acceleration = change in Velocity with time
Using the motion equation:
v = u + at
Where v = final Velocity
u = Initial Velocity and t = time
Plugging our values
525 = 0 + a × 18
525 = 18(a)
a = 525 / 18
a = 29.166666
a = 29.17 m/s^2