Answer:
Since there is attraction force between two charges so the other charge must be - 3C
Explanation:
As we know that the force between two charges is given by formula

here we know that

also we know that

r = 8 cm
now we have

so we have

Answer:
d. A projectile with a horizontal component of motion will have a constant horizontal velocity.
f. The horizontal velocity of a projectile is unaffected by the vertical velocity; these two components of motion are independent of each other.
g. The horizontal displacement of a projectile is dependent upon the time of flight and the initial horizontal velocity.
h. The final horizontal velocity of a projectile is always equal to the initial horizontal velocity.
Explanation:
When we are dealing with parabolic motion, the x-component of the velocity remains the same (hence, in the case of the horizontal component, the acceleration will always be zero), <u>while the y-component always change because it is affected by the acceleration due gravity that acts verticaly.</u>
On the other hand, the horizontal displacement
of the projectile is mathematically expressed as:
Where:
is the projectile's horizontal component of the initial velocity
is the time the parabolic motion lasts
This means <u>the projectile's horizontal displacement is directly proportional to the horizontal component of the initial velocity and the total time the projectile describes the parabolic motion</u>.
Of course, all of this considerations are assuming this is an ideal parabolic path and there is no air resistance.
Answer:
51.82
Explanation:
First of all, let's convert both vectors to cartesian coordinates:
Va = 36 < 53° = (36*cos(53), 36*sin(53))
Va = (21.67, 28.75)
Vb = 47 < 157° = (47*cos(157), 47*sin(157))
Vb = (-43.26, 18.36)
The sum of both vectors will be:
Va+Vb = (-21.59, 47.11) Now we will calculate the module of this vector:

Answer:
carrier power is 7.8 kW
Explanation:
given data
power = 10 kW
modulation percentage = 75 %
to find out
carrier power
solution
we will use here power transmitted equation that is
power =
.................1
put here value in equation 1 we get carrier power
10 = 
carrier power = 7.8
so carrier power is 7.8 kW
Answer:
Explanation:
The relation between electric field and potential difference is as follows
E = - dV / dr
That means if dV is positive , E is negative . In other words , if potential increases , E is negative or in opposite direction in which potential increases .
Here the electric potential increases uniformly from east to west , that means electric field is from west to east . Since potential is uniformly increasing that means
dV / dr = constant
E = constant
Electric field is constant .
So the option which is correct is
" points east and does not vary with position " .