Answer:
a
Explanation:
5N %¥€
So be cool.stay safe.bye bla bla bla bla bla bla
Answer:
Following are the answer to this question:
Explanation:
In option (a):
- The principle of Snells informs us that as light travels from the less dense medium to a denser layer, like water to air or a thinner layer of the air to the thicker ones, it bent to usual — an abstract feature that would be on the surface of all objects. Mostly, on the contrary, glow shifts from a denser with a less dense medium. This angle between both the usual and the light conditions rays is referred to as the refractive angle.
- Throughout in scenario, the light from its stars in the upper orbit, the surface area of both the Earth tends to increase because as light flows from the outer atmosphere towards the Earth, it defined above, to a lesser angle.
In option (b):
- Rays of light, that go directly down wouldn't bend, whilst also sun source which joins the upper orbit was reflected light from either a thicker distance and flex to the usual, following roughly the direction of the curve of the earth.
- Throughout the zenith specific position earlier in this thread, astronomical bodies appear throughout the right position while those close to a horizon seem to have been brightest than any of those close to the sky, and please find the attachment of the diagram.
At the lowest point on the Ferris wheel, there are two forces acting on the child: their weight of 430 N, and an upward centripetal/normal force with magnitude n; then the net force on the child is
∑ F = ma
n - 430 N = (430 N)/g • a
where m is the child's mass and a is their centripetal acceleration. The child has a linear speed of 3.5 m/s at any point along the path of the wheel whose radius is 17 m, so the centripetal acceleration is
a = (3.5 m/s)² / (17 m) ≈ 0.72 m/s²
and so
n = 430 N + (430 N)/g (0.72 m/s²) ≈ 460 N
Answer:
The energy flows between the ice and the tea equally. The table below shows the temperatures of several different objects made of the same material.