Answer:
a) <em>The equation</em> (10s + 8w) <em>represents </em><em>the </em><em>calories </em><em>Bridget </em><em>ate </em><em>on </em><em>Monday </em><em>and </em><em>the </em><em>equation</em> (20s + w) <em>represents </em><em>the </em><em>calories</em><em> </em><em>she </em><em>ate</em><em> </em><em>the </em><em>next </em><em>day.</em>
<em>b)</em><em> </em><em>The </em><em>number </em><em>of </em><em>calories</em><em> </em><em>in </em><em>each </em><em>strawberry</em><em> </em><em>is </em>4 <em>and </em><em>the </em><em>number </em><em>of </em><em>calories </em><em>in </em><em>each </em><em>vanilla</em><em> </em><em>wafer</em><em> cookie</em><em> </em><em>is </em>19. The solution is s= 4 and w = 19.
Step-by-step explanation:
For part A, Bridget ate 10 strawberries and 8 vanilla wafer cookies on Monday. Since the the number of calories in a strawberry is <em>s</em> and the number of calories in a vanilla wafer cookie is <em>w </em>, the number of calories Bridget ate on Monday is <em>10s + 8w</em><em>.</em><em> </em>The next day, Bridget ate 20 strawberries and 1 vanilla wafer cookie. Hence, the number of calories Bridget ate on the next day is 20s<em> + w</em>.
For part B,
we will create two different simultaneous equations.
Equation 1: 10s + 8w = 192
Equation 2: 20s + w = 99
We need to find one of the terms first to solve the other term. For this case, I will solve for w first.
Multiply the first equation by 2.
Equation 3: 20s + 16w = 192*2 = 384.
Now, subtract equation 2 from this new equation.
Equation 4:
(20s + 16w) - (20s + w) = 384 - 99
20s + 16w - 20s - w = 285
15w = 285
This leaves only w left and we can solve w.
w = 285 / 15 = 19
Now, we can solve for s using equation 2.
20s + 19 = 99
20s = 99-19 = 80
Hence,
s = 80/20 = 4