Answer: Option D is correct.
Explanation: Equation given by de Broglie is:

where,
= wavelength of the particle
h = Planck's constant
m = mass of the particle
v = velocity of the particle
In option A, football will have some mass and is moving with a velocity of 25 m/s, hence it will have some wavelength.
In Option B, unladen swallow also have some mass and is moving with a velocity of 38 km/hr, hence it will also have some wavelength.
In Option C, a person has some mass and is running with a velocity of 7 m/hr, hence it will also have some wavelength.
As, the momentum of these particles are large, therefore the wavelength will be of small magnitude and hence, is not observable.
From the above, it is clearly visible that all the options are having some wavelength, so option D is correct.
Answer:
a rapidly flowing river discharges into the ocean where tidal currents are weak.
Explanation:
The force of the river pushing fresh water out to sea rather than tidal currents transporting seawater upstream determines the water circulation in these estuaries.
Answer:

Explanation:
mass of Fe = 55.85 g
Molar mass of Fe = 55.85 g/mol
<u>Moles of Fe = 55.85 / 55.85 = 1</u>
mass of Cl = 106.5 g
Molar mass of Cl = 35.5 g/mol
Moles of Cl = 106.5 / 35.5 = 3
Taking the simplest ratio for Fe and Cl as:
1 : 3
The empirical formula is = 
Answer:
Ionic
Explanation:
If A does not have electron to bond, it just receives one electron from B.
It can´t be covalent because A don´t have any electrons to bond with B.
Answer:
The equation for wave speed can be used to calculate the speed of a wave when both wavelength and wave frequency are known. Consider an ocean wave with a wavelength of 3 meters and a frequency of 1 hertz. The speed of the wave is: Speed = 3 m x 1 wave/s = 3 m/s.
SO... take your meters and hezert and do tha same
Explanation:
Plz mark me as brainlyist