1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lapatulllka [165]
2 years ago
12

A 35-mm single lens reflex (SLR) digital camera is using a lens of focal length 35.0 mm to photograph a person who is 1.80 m tal

l and located 3.60 m from the lens. (a) How far is the CCD sensor from the lens when the person is in focus?
(b) How tall is the person's image on the CCD sensor?
Physics
1 answer:
olganol [36]2 years ago
7 0

Answer:

a) 35.44 mm

b) 17.67 mm

Explanation:

u = Object distance =  3.6 m

v = Image distance

f = Focal length = 35 mm

h_u= Object height = 1.8 m

a) Lens Equation

\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{35}-\frac{1}{3600}\\\Rightarrow \frac{1}{v}=\frac{713}{25200} \\\Rightarrow v=\frac{25200}{713}=35.34\ mm

The CCD sensor is 35.34 mm from the lens

b) Magnification

m=-\frac{v}{u}\\\Rightarrow m=-\frac{35.34}{3600}

m=\frac{h_v}{h_u}\\\Rightarrow -\frac{35.34}{3600}=\frac{h_v}{1800}\\\Rightarrow h_v=-\frac{35.34}{3600}\times 1800=-17.67\ mm

The person appears 17.67 mm tall on the sensor

You might be interested in
MY NOTES A spring with a mass of 2 kg has a damping constant 14 kg/s. A force of 3.6 N is required to keep the spring stretched
il63 [147K]
Answer: What’s the question?
Explanation: everything looks good for this!! I understand now :) I think ❤️ pls give me Brainly!
7 0
3 years ago
If a 10kg block is at rest on a table and a 1200N force is applied in the eastward direction for 10 seconds, what is the acceler
gavmur [86]

Answer:

a = 120 m/s²

Explanation:

We apply Newton's second law in the x direction:

∑Fₓ = m*a Formula (1)

Known data

Where:

∑Fₓ: Algebraic sum of forces in the x direction

F: Force in Newtons (N)

m: mass (kg)

a: acceleration of the block (m/s²)

F = 1200N

m = 10 kg

Problem development

We replace the known data in formula (1)

1200 = 10*a

a = 1200/10

a = 120 m/s²

6 0
3 years ago
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.0 N/cm. The block becomes attached t
Yuliya22 [10]

Answer:

a) W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

b) W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

c) V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

d)  d_1 =0.183m or 18.3 cm

Explanation:

For this case we have the following system with the forces on the figure attached.

We know that the spring compresses a total distance of x=0.10 m

Part a

The gravitational force is defined as mg so on this case the work donde by the gravity is:

W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

Part b

For this case first we can convert the spring constant to N/m like this:

2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}

And the work donde by the spring on this case is given by:

W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

Part c

We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i

And if we solve for the initial velocity we got:

V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

Part d

Let d1 represent the new maximum distance, in order to find it we know that :

-1/2mV^2_i = W_g + W_{spring}

And replacing we got:

-1/2mV^2_i =mg d_1 -1/2 k d^2_1

And we can put the terms like this:

\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0

If we multiply all the equation by 2 we got:

k d^2_1 -2 mg d_1 -m V^2_i =0

Now we can replace the values and we got:

200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0

200 d^2_1 -2.058 d_1 -6.3525=0

And solving the quadratic equation we got that the solution for d_1 =0.183m or 18.3 cm because the negative solution not make sense.

5 0
2 years ago
Astronaut Sarah leaves Earth in a spaceship at a speed of 0.280c relative to Earth. Sarah's destination is a star-system 12.5 li
Usimov [2.4K]

Answer:

L= 12 light years

Explanation:

for length dilation we use the formula

L=L_0\sqrt{1-\frac{v^2}{c^2} }

now calculating Lo

Lo = 12.5×365×24×3600×3×10^8

= 1.183×10^17 m

now putting the values of v and Lo in the above equation we get

L=1.183\times10^{17}\sqrt{1-\frac{0.28c^2}{c^2} }

= 1.136×10^17 m

L=  = \frac{1.136\times10^{17}}{365\times24\times3600\times3\times10^8}m

so L= 12 light years

8 0
3 years ago
Tamiko it's creating a list of characteristics traditionally associated with males in American society. which current characteri
Irina-Kira [14]
It is A !! Woot woot
3 0
3 years ago
Read 2 more answers
Other questions:
  • A double insulated drill ____. A. has two ground wires to insure proper grounding B. generally has a plastic case with the elect
    12·1 answer
  • justin and his friends are on the football team. they consider skateboarders at their school to be an out-group. what does this
    11·2 answers
  • A car is initially traveling at 12 m/s when the driver sees a yellow light ahead. He accelerates at a constant 7 m/s^2 for 6 s i
    11·1 answer
  • During a race, a dragster is 200m from the finish line when something goes wrong and it stops accelerating. It travels at a cons
    14·1 answer
  • The density of a material is calculated by:
    5·1 answer
  • What was the purpose of the little Albert experiment?
    11·1 answer
  • SCIENCE whoever gets this first will get a brainlest
    9·2 answers
  • HELP!!!!! FILL IN THE BLANKS
    13·1 answer
  • Why does the moon appear to change its shape as seen from Earth
    6·1 answer
  • A plant dying after being exposed to poison represents a physical change.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!