Answer:
Guysi hate math answer this guy plsss ssss
Answer:
D. Newton's second law
Explanation:
Newton's second law of motion states that force of an object is a product of its mass and its acceleration.
Mathematically, F= ma where m is mass and a is acceleration
So from the statement above : The acceleration of an object is proportional to the force applied to it and inversely proportional to its mass , it can be seen from the formula variation as;
F= ma -----making a the subject of the formula
a= F/ m
a= 1/m * F --------- a is inversely related to m as you can see from 1/m but directly related to F hence;
Increase in mass with the same force applied causes the body to accelerate slower where as when force increases, the body accelerates faster.
Answer:
1. 
2. 
Explanation:
1. According to Newton's law of motion, the puck motion is affected by the acceleration, which is generated by the push force F.
In Newton's 2nd law: F = ma
where m is the mass of the object and a is the resulted acceleration. So in the 2nd experiment, if we double the mass, a would be reduced by half.

Since the puck start from rest, in the 1st experiment, to achieve speed of v it would take t time

Now that acceleration is halved:


You would need to push for twice amount of time 
2. The distance traveled by the puck is as the following equation:

So if the acceleration is halved while maintaining the same d:

As
, then
. Also 



So t increased by 1.14
A girl standing on a floor would have two opposite forces acting on it. These forces are the weight and the normal force. Since no other forces are acting and that the girl is at rest, then the weight must equate to the normal force. Therefore, the supporting force would be:
F = mg = 55kg (9.81 m/s^2) = 539.55 N
The gravitational forces between the Earth and Moon are greatest when the two bodies are closest together. That happens every 27.32 days, when the Moon is at the perigee of its orbit.
Even if this happened at the same time in every orbit, the date would change, because there are not 27.32 days in a month.
But it doesn't happen at the same time in every orbit ... the Moon's perigee precesses around its orbit, on account of the gravitational forces toward the Earth, the Sun, Venus, Mars, and the other planets.