Let D be the total distance (say in meters) traveled by the train and T the time (say in seconds) it takes to do so. (Assume the train moves in a straight line in only one direction.) Then the average velocity of the train as it covers this distance is
v (ave) = D/T
We're told the train can traverse a distance of D/4 in a matter of T/2 seconds if it moves at a speed of 5 m/s. This means
D/4 = (5 m/s) (T/2)
⇒ 5 m/s = 1/2 D/T
⇒ v (ave) = D/T = 10 m/s
To calcculate the braking force of the car moving, we use Newton's second law of motion which relates the acceleration and the force of an object moving. The force of an object moving is directly proportional to its acceleration and the proportionality constant is the mass of the object. It is expressed as:
Force = ma
Acceleration is the rate of change of the velocity of a moving object. We calculate acceleration from the velocity and the time given above.
a = (10 m/s) / 5 s = 2 m/s^2
So,
Force = ma
Force = 1000 kg ( 2 m/s^2 )
Force = 2000 kg m/s^2 or 2000 N
Answer:
Cocoa mix is the: Solute
Water is the: Solvent
The solution has reached: Saturation
Explanation:
Answer:
x3
Explanation:
trying to find the inetria magnitude of the wheel