Oregon trail would be the best answer
Explanation:
biotic factors are the things which have life like animals and plants
And Abiotic factors are the things which don't have life like air,stone and river
Answer:
(a)

(b)

Explanation:
Hello,
(a) In this case, as the reaction is second-ordered, one uses the following kinetic equation to compute the concentration of NOBr after 22 seconds:
![\frac{1}{[NOBr]}=kt +\frac{1}{[NOBr]_0}\\\frac{1}{[NOBr]}=\frac{0.8}{M*s}*22s+\frac{1}{0.086M}=\frac{29.3}{M}\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BNOBr%5D%7D%3Dkt%20%2B%5Cfrac%7B1%7D%7B%5BNOBr%5D_0%7D%5C%5C%5Cfrac%7B1%7D%7B%5BNOBr%5D%7D%3D%5Cfrac%7B0.8%7D%7BM%2As%7D%2A22s%2B%5Cfrac%7B1%7D%7B0.086M%7D%3D%5Cfrac%7B29.3%7D%7BM%7D%5C%5C)
![[NOBr]=\frac{1}{29.2/M}=0.0342M](https://tex.z-dn.net/?f=%5BNOBr%5D%3D%5Cfrac%7B1%7D%7B29.2%2FM%7D%3D0.0342M)
(b) Now, for a second-order reaction, the half-life is computed as shown below:
![t_{1/2}=\frac{1}{k[NOBr]_0}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cfrac%7B1%7D%7Bk%5BNOBr%5D_0%7D)
Therefore, for the given initial concentrations one obtains:

Best regards.
Answer: The quantity of heat required is 358.644 J.
Explanation:
Given: Specific heat capacity = 
Mass = 1.50 g


Formula used to calculate heat energy is as follows.

where,
q = heat energy
m = mass
C = specific heat capacity
= initial temperature
= final temperature
Substitute the values into above formula as follows.

Thus, we can conclude that quantity of heat required is 358.644 J.
The second ionization energy of Mg is larger than the first because it always takes more energy to remove an electron from a positively charged ion than from a neutral atom. The third ionization energy of magnesium is enormous, however, because the Mg2+ ion has a filled-shell electron configuration.