Answer:
The correct option is A
Explanation:
From the question we are told that
The mass number is 
Generally the mean radius is mathematically evaluated as

Here
is a constant with a value 
So



The reasoning which is in use when large, angular rocks are interpreted to have originated from the outcrop at the top of the hill is; Fossil succession
<h3>Fossil succession of rocks</h3>
The principle of fossil succession in characterized by the fact that fossil entities succeed one another upward through rock layers in a definite and determinable order.
On this note, any time period can be dated by its fossil content.
Read more on fossil succession;
brainly.com/question/2631497
Answer:
The time constant is
Explanation:
From the question we are told that
The spring constant is 
The mass of the ball is 
The amplitude of the oscillation t the beginning is 
The amplitude after time t is 
The number of oscillation is 
Generally the time taken to attain the second amplitude is mathematically represented as
Here T is the period of oscillation

=> 
=> 
Generally the amplitude at time t is mathematically represented as

Here a is the damping constant so
at
, 
So

=> 
taking natural log of both sides
=>
=> 
Generally the time constant is mathematically represented as
=>
=>
Answer:
The bullet's initial speed is 243.21 m/s.
Explanation:
Given that,
Mass of the bullet, 
Mass of the pendulum, 
The center of mass of the pendulum rises a vertical distance of 10 cm.
We need to find the bullet's initial speed if it is assumed that the bullet remains embedded in the pendulum. Let it is v. In this case, the energy of the system remains conserved. The kinetic energy of the bullet gets converted to potential energy for the whole system. So,
V is the speed of the bullet and pendulum at the time of collision
Now using conservation of momentum as :
Put the value of V from equation (1) in above equation as :

So, the bullet's initial speed is 243.21 m/s.