Answer:

Explanation:
The change in kinetic energy will be simply the difference between the final and initial kinetic energies: 
We know that the formula for the kinetic energy for an object is:

where <em>m </em>is the mass of the object and <em>v</em> its velocity.
For our case then we have:

Which for our values is:

The frequency of the wave is 6800 Hz
<u>Explanation:</u>
Given:
Wave number, n = 20
Speed of light, v = 340 m/s
Frequency, f = ?
we know:
wave number = 

Therefore, the frequency of the wave is 6800 Hz
Answer:
A) coil A
Explanation:
According to Faraday, Induced emf is given as;
E.M.F = ΔФ/t
ΔФ = BACosθ
where;
ΔФ is change in magnetic flux
θ is the angle between the magnetic field, B, and the normal to the loop of area A
A is the area of the loop
B is the magnetic field
From the equation above, induced emf depends on the strength of the magnetic field.
Both coils have the same area and are oriented at right angles to the field.
Coil A has a magnetic field strength of 10-T which is greater than 1 T of coil B, thus, coil A will have a greater emf induced in it.
Answer:
Without it, we could not survive on Earth. Earth orbits the sun due to the gravity of the sun, which maintains us at a convenient distance from it to enjoy the sun's warmth and light. It keeps the air we need to breathe and our atmosphere in place. Our planet is held together by gravity.
Answer:
(a) ΔP=0.0245 kPa
(b) P=9.14 kPa
(c)ΔP=0.0245 kPa
Explanation:
(a) As it is perfect gas we can use
(P₁V₁)/T₁=(P₂V₂)/T₂
Since this constant volume so
P₁/T₁=P₂/T₂
T₂ is change in temperature
T₂=1.00+273.16
T₂=274.16 K

ΔP=6.71449-6.69
ΔP=0.0245 kPa
(b) As

(c) Same steps as in part (a)

ΔP=9.164-9.14
ΔP=0.0245kPa