13.0/18=.07222222
sig figs: 0.722 mole of water
Answer:
92.6 g.
Explanation:
- The balanced equation is:
CaC₂ + N₂ → CaCN₂ + C.
- It is clear that 1.0 mole of CaC₂ reacts with 1.0 mole of N₂ to produce 1.0 mole of CaCN₂ and 1.0 mole of C.
- We need to calculate the no. of moles of 265.0 g of CaCN₂ produced using the relation:
n = mass / molar mass = (265.0 g) / (80.102 g/mol) = 3.308 mol.
- We should get the no. of moles of N₂ needed to produce 3.308 mol of CaCN₂.
∵ 1.0 mole of N₂ produces → 1.0 mole of CaCN₂.
<em>∴ 3.308 mole of N₂ produces → 3.308 mole of CaCN₂.</em>
- Now, we can get the grams of N₂ consumed to produce 265.0 g of CaCN₂:
∴ The grams of N₂ = n x molar mass = (3.308 mole)(28.0 g/mol) = 92.63 g = 92.6 g.
Answer:
B) 3.0 g/mL
Explanation:
density formula: mass/volume
15/5=3
One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's number or Avogadro's constant.