Answer:
The coldest temperature possible
Explanation:
Absolute zero = 0 K
A. is wrong. 0 °C = 273 K
B. is wrong. -210 °C = 63 K
C. is wrong. 32 °F = 273 K
E. is wrong. -196°C = 77 K
Answer:
The chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Explanation:
Chemical equation:
Cl₂(g) + KBr (aq) → KCl (aq) + Br₂(l)
Balanced chemical equation:
Cl₂(g) + 2KBr (aq) → 2KCl (aq) + Br₂(l)
This equation showed that the chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Chlorine is more reactive than bromine it displace the bromine from potassium and form potassium chloride solution.
The given equation is balanced and completely hold the law of conservation of mass.
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Answer : The volume of hydrogen gas at STP is 4550 L.
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 100.0 atm
= final pressure of gas at STP = 1 atm
= initial volume of gas = 50.0 L
= final volume of gas at STP = ?
= initial temperature of gas = 
= final temperature of gas at STP = 
Now put all the given values in the above equation, we get:


Therefore, the volume of hydrogen gas at STP is 4550 L.
<span>0.0165 m
The balanced equation for the reaction is
AgNO3 + MgCl2 ==> AgCl + Mg(NO3)2
So it's obvious that for each Mg ion, you'll get 1 AgCl molecule as a product. Now calculate the molar mass of AgCl, starting with looking up the atomic weights.
Atomic weight silver = 107.8682
Atomic weight chlorine = 35.453
Molar mass AgCl = 107.8682 + 35.453 = 143.3212 g/mol
Now how many moles were produced?
0.1183 g / 143.3212 g/mol = 0.000825419 mol
So we had 0.000825419 moles of MgCl2 in the sample of 50.0 ml. Since concentration is defined as moles per liter, do the division.
0.000825419 / 0.0500 = 0.016508374 mol/L = 0.016508374 m
Rounding to 3 significant figures gives 0.0165 m</span>