The change in the internal energy of the gas is 1.5×10∧3 J.
The internal energy of an ideal gas is directly proportional to the temperature of the gas:
ΔE = 3/2 × n × R × ΔT
ΔT = 320 K - 260 K
ΔT = 60 K; change of the temperature
n = 2.0 mol: amount of a monatomic ideal gas
R = 8.1 J/mol×K;the ideal gas constant
ΔE = 3/2 × 2 mol × 8.1 J/mol×K × 60 K
ΔE = 1500 J
ΔE = 1.5×10∧3 J; the internal energy of the gas
Isobaric process is a type of process in which the pressure of the system stays constant.
More about an isobaric process: brainly.com/question/28106078
#SPJ4
To determine the fraction of carbon in morphine, we need to know the chemical formula of morphine. From my readings, the chemical formula would be <span>C17H19NO<span>3. We assume we have 1 g of this substance. Using the molar mass, we can calculate for the moles of morphine. Then, from the formula we relate the amount of carbon in every mole of morphine. Lastly, we multiply the molar mass of carbon to obtain the mass of carbon. We calculate as follows:
1 g </span></span> <span>C17H19NO<span>3 ( 1 mol / 285.34 g ) ( 17 mol C / 1 mol </span></span> <span>C17H19NO3</span>) ( 12.01 g C / 1 mol C) = 0.7155 g C
Fraction of carbon = 0.7155 g C / 1 g <span>C17H19NO<span>3 = 0.7155</span></span>
Answer:
A. fluorine, 1.79 moles
Explanation:
Given parameters:
Mass of carbon = 87.7g
Mass of fluorine gas = 136g
Unknown:
The limiting reactant and the maximum amount of moles of carbon tetrafluoride that can be produced = ?
Solution:
Equation of the reaction:
C + 2F₂ → CF₄
let us find the number of the moles the given species;
Number of moles =
C; molar mass = 12;
Number of moles =
= 7.31moles
F; molar mass = 2(19) = 38g/mol
Number of moles =
= 3.58moles
So;
From the give reaction:
1 mole of C requires 2 moles of F₂
7.31 moles of C will then require 2 x 7.31 moles of F₂ = 14.62moles
But we have 3.58 moles of the F₂;
Therefore, the reactant in short supply is F₂ and it is the limiting reactant;
So;
2 moles of F₂ will produce mole of CF₄
3.58 moles of F₂ will then produce
= 1.79moles of CF₄
Answer:

Explanation:
From the question we are told that:
Slope 
initial Concentration 
Time 
Generally the equation for Raw law is mathematically given by



The formula for force is F=ma. Because weight is a measure of force, then we can substitute the weight of the meteor, 3204 N, for F in the the equation for force. We also know that the acceleration of gravity on Earth is 9.8 m/s^2. To find the mass, simply divide both sides of the equation by the value of acceleration to get

Therefore, the value of the mass of the meteor is 326.9 kg.