Answer:
9ms^2
Explanation:
since ,Force=mass*acceleration
then, acceleration=force/mass
and, Force=90N
Mass=10pound
therefore, acceleration=90/10
=9ms^2
Explanation:
Given
initial velocity(v_0)=1.72 m/s

using 
Where v=final velocity (Here v=0)
u=initial velocity(1.72 m/s)
a=acceleration 
s=distance traveled

s=0.214 m
(b)time taken to travel 0.214 m
v=u+at


t=0.249 s
(c)Speed of the block at bottom

Here u=0 as it started coming downward

v=1.72 m/s
Answer:
a) 0.040625 m
b) 5.02272 J
Explanation:
k = Spring constant
x = Stretched length
F = Force
a)


Extension of the spring would be 0.040625 m
b) Work done in a spring

The work done by the shopper to stretch this spring a total distance of 8.00 cm is 5.02272 J
To solve this problem we will apply the concepts related to potential gravitational energy. This is defined as the product between mass, acceleration and change in height and can be expressed as,

Here,
m = Mass
g = Gravitational acceleration
= Height
Replacing with our values we have,


Therefore the change in gravitational potential energy is 883J.
Answer:
The induced emf in the coil at the t = 5s is 6.363 mV
Explanation:
Given;
number of turns = 75
diameter of the coil = 6 cm
magnetic field strength = 1 T
new magnetic field strength = 1.30 T at t = 10.0 s


Between 0 to 5 s, Induced emf is given as;

Between 5 to 10 s, Induced emf is given as;

Since the field increased at a uniform rate until it reaches 1.30 T at t = 10.0 s, the induced emf will also increase in uniform rate. And equal time interval will generate same increase in field strength.
B₅ -1 = 1.3 - B₅
2B₅ = 2.3
B₅ = 1.15 T
Thus, magnetic field at t = 5 is 1.15 T

Therefore, the induced emf in the coil at the t = 5s is 6.363 mV