C and d are the right answers
Explanation:
Distance covered by the satellite in 24 hours
s=2πr
=2×3.14×42250=265464.58 km
Therefore speed of satellite,
v=
time taken
distance travelled
=
24×60×60
265464.58
=3.07 km s
−1
Answer:
a) C.M 
b) 
Explanation:
The center of mass "represent the unique point in an object or system which can be used to describe the system's response to external forces and torques"
The center of mass on a two dimensional plane is defined with the following formulas:


Where M represent the sum of all the masses on the system.
And the center of mass C.M 
Part a
represent the masses.
represent the coordinates for the masses with the units on meters.
So we have everything in order to find the center of mass, if we begin with the x coordinate we have:


C.M 
Part b
For this case we have an additional mass
and we know that the resulting new center of mass it at the origin C.M
and we want to find the location for this new particle. Let the coordinates for this new particle given by (a,b)

If we solve for a we got:




And solving for b we got:

So the coordinates for this new particle are:

Answer:
<h2> 27m/s</h2>
Explanation:
Given data
initital velocity u=15m/s
deceleration a=3m/s^2
time t= 4 seconds
final velocity v= ?
Applying the expression
v=u+at------1
substituting our data into the expression we have
v=15+3*4
v=15+12
v=27m/s
The velocity after 4 seconds is 27m/s
Answer:
F=5.7×10⁻⁶
Explanation:
Not knowing a formula outright, I decided to follow the units of some relationships I did know. Radiation pressure is defined as force per area and also intensity divided by velocity (the speed of light here of course). Breaking intensity down into power per area and isolating force gave me the relationship F=(Power/Velocity),where power is given and the velocity is a constant.
My work is in the attachment, where I double checked the units too, comment with any questions.