Voltage is potential energy per coulomb (J/C). So use the voltage and charge on an electron to get E=V•Q=1.5e8•1.602e-19=2.4e-11J
Answer:
∆p=(m2v)kg.m/s
Explanation:
∆p=mv where v=2v. hence ∆p=m2v
Explanation:
Given that,
(a) Work done by the electric field is 12 J on a 0.0001 C of charge. The electric potential is defined as the work done per unit charged particles. It is given by :



(b) Similarly, same electric field does 24 J of work on a 0.0002-C charge. The electric potential difference is given by :



Therefore, this is the required solution.
The correct answer is C; Bicycles.
Further Explanation:
In major cities, in the United States, have implemented signal lights specifically designed for bicycle riders. The riders also have their own designated bike lanes in many large cities. Drivers in vehicles, are to give the right of way to people on bicycles.
Bicycle riders are to follow the same laws and laws specifically for the riders or they can face fines and tickets.
Learn more about bicycle laws at brainly.com/question/8934107
#LearnwithBrainly
Answer:
Dr = 263 10⁻⁶ m
Explanation:
The diffraction pattern for constructive interference is described by
a sin θ = m λ
in this it indicates that the order of diffraction is m = 1
Let's use a direct proportion rule to find the separation of two slits. If there are 600 lines in 1 me, what is the distance between 2 slits
a = 2 lines 1/600
a = 2/600
a = 3.33 10⁻³ mm = 3.33 10⁻⁴ cm
let's use trigonometry
tan θ = y / L
as the measured angles are small
tan θ = sin θ / cos θ sin θ
sin θ = y / L
we substitute
a y/L = λ
y = λ L / a
for λ = 400 10-9 m
I = 400 10⁻⁹ 2.9 / 3.33 10⁻³
i = 346.89 10⁻⁶ m
f
or λ = 700 nm
y_f = 700 10⁻⁻⁹ 2.9 / 3.33 10⁻³
y_f = 609.609 10⁻⁶ m
the separation of this spectrum
Δr = v_f - i
Dr = (609.609 - 346) 10 ⁻⁶
Dr = 263 10⁻⁶ m