1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Levart [38]
3 years ago
6

An object experiences an impulse, moves and attains a momentum of 200 kg·m/s. If its mass is 50 kg, what is its velocity?

Physics
1 answer:
Nady [450]3 years ago
8 0

Answer:

4 m/s

Explanation:

Momentum is defined as:

p=mv

where

m is the mass of the object

v is its velocity

For the object in this problem, we know:

p = 200 kg m/s is the momentum

m = 50 kg is the mass

Solving for the velocity, we find:

v=\frac{p}{m}=\frac{200}{50}=4 m/s

You might be interested in
Which is 20 miles per hour north an example of?
puteri [66]
D. Velocity because it describes a speed and direction
6 0
3 years ago
Read 2 more answers
Which wavelength would scientists use to measure the molecular structure of H2O?
Ne4ueva [31]

Answer:

To find out what water is made of, it helps to look at its chemical formula, which is H2O. This basically tells us that the water molecule is composed of two elements: hydrogen and oxygen or, more precisely, two hydrogen atoms (H2) and one oxygen atom (O).

Explanation:

7 0
3 years ago
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Determine the direction of the force that will act on the charge in each of the following situations. A negative charge moving t
wlad13 [49]

Answer:

a) DOWN direction,  b)  directed INTO THE SCREEN, c)    F = 0

Explanation:

The direction of the force is

for electric force

           F = q E

where we assume a positive test charge, for which the force has the direction of the electric field.

For a magnetic field

in this case the direction of the force is given by the right hand rule.

For a positive test charge, the thumb points in the direction of velocity, the other fingers extended in the direction of the magnetic field, and the palm gives the direction of force for a positive charge.

           F = q v x B

Let us apply these considerations to our case.

a) negative charge moving to the left

in a magnetic field points away from the screen

In this case the thumb goes to the left, the fingers extended outwards and the palm points upwards, but since the charge is negative the force has a DOWN direction.

b) negative charge moves to the left

in electric field it points off the screen.

The outside is in the direction of the electric field and since the charge is negative, the force is directed INTO THE SCREEN

c) positive charge moves down

in magnetic field points up

in this case the velocity and the field have the same direction so the vector product of them is zero

       F = q v  B sin 0

       F = 0

6 0
3 years ago
Which two changes would decrease the electric force between two charged
ch4aika [34]

Answer:

it is b and e

Explanation:

<h2>if u look at the words twice you will notice that b and e are both saying the same meanings just in diff rent words way u need to look close on things like that and u will get passing grades </h2>
6 0
2 years ago
Other questions:
  • The author s feeling about a subject or topic, which is evidenced in word choice, is called __________. conflict resolution tone
    8·2 answers
  • A penny rolls along the table for a distance of 1.3 meters. Jackie pushes it 40 centimeters further in the same direction.
    13·1 answer
  • If the mass of a material is 106 grams and the volume of the material is 12 cm3, what would the density of the material be?
    7·1 answer
  • A cylindrical bar of steel 10.1 mm (0.3976 in.) in diameter is to be deformed elastically by application of a force along the ba
    7·1 answer
  • A bullet is fired through a board 13.0 cm thick in such a way that the bullet's line of motion is perpendicular to the face of t
    6·1 answer
  • How does the frequency of gamma rays compare to the frequency of microwaves?
    8·1 answer
  • Imagine the door to a theatre is opened and you are standing outside. How is it possible that you can hear the sound of the movi
    9·1 answer
  • A boy is pulling a box on the ground by a string to the right. What four forces he using?
    13·1 answer
  • In the reaction _S+302 +2SO3, what coefficient should be placed in front of the S to balance the reaction?
    12·1 answer
  • How many total atoms in the chemical formula CaCO2?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!