Since there is no friction between the ladder and the wall, there can be no vertical force component. That's the tricky part ;)
So to find the weight, divide the 100N <em>normal</em> force by earths gravitational acceleration, 9.8m/s^2

Then;
Draw an arrow at the base of the ladder pointing towards the wall with a value of 30N, to show the frictional force.
1. e) None of the above is necessarily true.
2.d) Without knowing the mass of the boat and the sack, we cannot tell.
Answer:
M=28.88 gm/mol
Explanation:
Given that
T= 95 K
P= 1.6 atm
V= 4.87 L
m = 28.6 g
R=0.08206L atm .mol .K
We know that gas equation for ideal gas
P V = n R T
P=Pressure , V=Volume ,n=Moles,T= Temperature ,R=gas constant
Now by putting the values
P V = n R T
1.6 x 4.87 = n x 0.08206 x 95
n=0.99 moles
We know that number of moles given as

M=Molar mass


M=28.88 gm/mol
Answer:
30N in the direction the 45N acts.
Explanation:
Fnet = F1 + F2 (the vector sum of the forces)
Assigning a positive direction to the 45N force and a negative direction to the 15N force gives:
Fnet = 45 - 15
Fnet = 30N
Since the answer is positive, it is in the direction the 45N force acts.