A raging activity can be found in t<span>he Sun's interior, with pressure waves being produced and travelling back and forth, from the core to the surface and back to the core. By looking closely at the 'surface' we can see these "ripples". It gives us an idea of how dense the material was that the waves passed through. In a way, this can help to predict solar storms in the future.</span>
Answer:
Explanation:
The Carnot cycle is a special case of a thermodynamic cycle that produces an ideal gas and consists of two isothermal processes and two adiabatic processes. This cycle is a theoretical solution given by Sadi Karnot to refine heat engines for their efficient use.
The formula for the coefficient of efficiency is:
η = (Q₁ - Q₂) / Q₁ = (T₁ - T₂) / T₁
Where Q₁ is is the amount of heat of the heater supplied to the working body and Q₂ is the amount of heat that the working body transfers to the refrigerator according to this T₁ is the temperature of the heater T₂ is the temperature of the refrigerator.
This formula provides a theoretical limit for the maximum value of the coefficient of efficiency of heat engines.
God is with you!!!
I guess it is a: seismic waves
Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
If the current takes him downstream we must find the resultant vector of the velocities:

Then if the river is 3000 m-wide the swimmer will have to pass:
1.3520747 · 300 = 4056.14 m t = 4056.14 m : 1 m/s
a ) It takes
4056.15 seconds ( 1 hour 7 minutes and 36 seconds ) to cross the river.
b ) 0.91 · 3000 =
2730 mHe will be 2730 m downstream.