Answer:
P = 450 J
Explanation:
Given that,
Mass of a child, m = 18 kg
The vertical distance from the top to the bottom of the slide is 2.5 metres.
The Gravitational field strength = 10 N/kg
We need to find the decrease in gravitational potential energy of the child sliding from the top to the bottom of the slide.
The formula for the gravitational potential energy is given by :
P = mgh
Substituting all the values,
P = 18 kg × 10 m/s² × 2.5 m
P = 450 J
Hence, the decrease in gravitational potential energy is 450 J.
energy extracted out of liquids an atoms are left to come closer arrange themselves shorter distance and then they solidify
Static Friction
It is the friction that exists between a stationary object and the surface on which it's resting.
Sliding friction
It is the resistance created by two objects sliding against each other.
Rolling friction:-
It is the force resisting the motion when a body rolls on a surface.
hope this helps x
Answer:
An object on the moon would weigh the LEAST among these. So correct answer is B.
Explanation:
- Weight of an object on any place is given by:
W = Mass * Acceleration due to gravity(g)
- It means when masses of different objects those are in different places are same, the weight of those objects depends upon the 'g' of that particular place.
- As we know, acceleration due to gravity on surface of moon (g') is 6 times weaker than the acceleration on surface of earth (g), which is due to the large M/R^2 of the earth than the moon.
i.e. g' = g/6 so W' = W/6
- And in the space between the two, the object is weightless.