Answer:
Heat required = mass× latent heat Q = 0.15 × 871 ×
Answer:
Sound wave is a longitudinal wave that propagates in a medium
Explanation:
<em>Part A:</em> (C) Sound wave is propagation of pressure fluctuations in a medium.
<em>Part B: </em>(C) Pressure fluctuations travel along the direction of propagation of the sound wave.
<em>Part C: </em>(A) Yes air play a role in the propagation of the human voice from one end of the lecture hall to the other.
The Force per meter on a straight wire carrying current in a magnetic field is<u> 0.045 N/m.</u>
<u>Calculation:-</u>
F/ℓ = B I sin θ
Where B – Magnetic field = 0.02 T I – Current = 5 A
Substituting the values
F/ℓ = (0.02) (5) (sin 27 deg)
F/ℓ = <u>0.045 N/m</u>
A force is an influence that can alternate the motion of an item. A force can cause an item with mass to trade its pace, i.e., to boost up. force can also be described intuitively as a push or a pull. A pressure has both value and course, making it a vector quantity.
The push or pull on an item with mass causes it to change its velocity. force is an external agent capable of converting a frame's nation of relaxation or motion. It has significance and a path. A force is a push or pulls among gadgets. it is called an interplay because if one object acts on some other, its movement is matched with the aid of a reaction from the alternative object.
Learn more about force here:-brainly.com/question/12970081
#SPJ4
Answer:
4.7 GHz
Explanation:
Applying,
v = λf................. Equation 1
Where v = velocity of the radio wave, λ = wavelength, f = frequency
make f the subject of the equation
f = v/λ.............. Equation 2
Note: A radio wave is an electromagnetic wave, as such it moves with a velocity of 3.00 x 10⁸ m/s
From the question,
Given: λ = 0.0644 meters
Constant: v = <em>3.00 x 10⁸ m/s</em>
Substitute these values into equation 2
f = (3.00 x 10⁸)/0.0644
f = 4.66×10⁹ Hz
f = 4.7 GHz
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω