Answer: Option (b) is the correct answer.
Explanation:
It is given that a positive test charge q is released from rest at a distance r away from a charge of +Q and a distance 2r which is away from a charge of +2Q.
Then test charge to the right immediately after being released.
Therefore, the net force will be as follows.
F = 
= 
= 
F =
> 0
Thus, we can conclude that the test charge move to the right immediately after being released.
For a human jumper to reach a height of 110 cm, the person will need to leave the ground at a speed of 4.65 m/s.
We can calculate the initial speed to reach 110 cm of height with the following equation:

Where:
: is the final speed = 0 (at the maximum height of 110 cm)
: is the initial speed =?
g: is the acceleration due to gravity = 9.81 m/s²
h: is the height = 110 cm = 1.10 m
Hence, the <u>initial velocity</u> is:

Therefore, the initial speed that the person must have to reach 110 cm is 4.65 m/s.
You can see another example here: brainly.com/question/13359681?referrer=searchResults
I hope it helps you!
Walk out. If it's denser than air, it'll settle to the bottom
Answer:
a. Cylinder head
b. Exhaust valve
c. Engine block
d. Stroke
e. Piston
f. Intake valve
g. Cylinder
h. Combustion chamber
i. Crankshaft
j. Spark plug
Explanation:
If you don’t believe me, look up a diagram of an internal combustion engine.
The net force acting on the crate is determined as 176 N to the left.
<h3>Net force acting on the crate</h3>
The net force acting on the crate is calculated as follows;
∑F = F1 + F2 + F3 + F4
F(net) = -440y + 176x + 440y - 352x
F(net) = -176 x
The resultant force is pointing in negative x direction.
Thus, the net force acting on the crate is determined as 176 N to the left.
Learn more about net force here: brainly.com/question/14361879
#SPJ1