75
p = w / t
p = 180 / 2.4
p = 75
Answer:
2.80 MJ
Explanation:
(a) We want to calculate the energy U of the battery, where its voltage is E = 13.0V and the supplied current is I = 60 A. We can neglect the internal resistance, so the terminal voltage equals the emf of the battery V = 13.0V. The quantity of delivered energy is given by the rate at which energy is delivered to it in a certain time t. We could obtain the rate at which energy is transferred by using equation , where the rate represents the power P = IV. Therefore, the energy produced is given by
U = P*t (P = IV)
U = I*V*t (1)
Now we can plug our values for I, V and t into equation (1) to get the energy produced in time t = 1 h = 3600 s
U = I*V*t = (60 A)(13 V)(3600s) = 2.80 MJ
1). Walking / Driving
If there were no static friction between the soles of your shoes and the ground, then you could move your feet back and forth but your body would never go anywhere.
Same for using tires to move a car, a bus, a bicycle or a motorcycle.
2). Sleeping
If there were no static friction between your jammies and the sheet, you would slide right off of the bed whenever there was the slightest breeze of air in the room.
Answer:
the answer to your question is 4 cm long
Explanation:
75 percent (calculated percentage %) of what number equals 27? Answer: 36.