Answer:
Boiling point of the solution is 100.78°C
Explanation:
This is about colligative properties.
First of all, we need to calculate molality from the freezing point depression.
ΔT = Kf . m . i
As the solute is nonelectrolyte, i = 1
0°C - (-2.79°C) = 1.86 °C/m . m . 1
2.79°C / 1.86 m/°C = 1.5 m
Now, we go to the boiling point elevation
ΔT = Kb . m . i
Final T° - 100°C = 0.52 °C/m . 1.5m . 1
Final T° = 0.52 °C/m . 1.5m . 1 + 100°C → 100.78°C
Answer:
The behavior of molecules in different phases of matter represents a balance between the kinetic energies of the molecules and the attractive forces between them. All molecules are attracted to each other. The molecules are in the solid-state. At higher temperatures, the kinetic energy of the molecules is higher.
It's 2, glass. Water, nitrogen, and sucrose don;t have a crystalline structure.
Answer:
Explanation:
Strontium chlorate appears as a moist solid or semi-solid slurry of white crystals. May explode under exposure to heat or fire. Used in pyrotechnics
strontium chlorate | Sr(ClO3)2 - PubChem.
Description: Strontium chlorate appears as a ...
Synonyms: STRONTIUM CHLORATE7791-10-...
Molecular Formula: Sr(ClO3)2 or Cl2O6Sr
Answer:
-169°C to -104°C
Explanation:
Ethene, also known as ethylene exists in solid, liquid and gaseous states. Ethene is an aliens with condensed structural formula C2H4. Athens is a colourless gas. It is flammable and is also a sweet smelling gas in its pure form. It is the monomer in the production of polyethylene which is of great importance in the plastic industry. In agriculture, it is used to induce the ripening of fruits. It can be hydrated in order to produce ethanol.
The liquid range of ethene refers to the temperatures at which ethene is found in the liquid state of matter. It is actually the difference between the melting point and the boiling points of ethene. Hence the liquid range of ethene is -169°C to -104°C