<h3>Answer:</h3>
Excess Reagent = NBr₃
<h3>Solution:</h3>
The Balance Chemical Equation for the reaction of NBr₃ and NaOH is as follow,
2 NBr₃ + 3 NaOH → N₂ + 3 NaBr + 3 HBrO
Calculating the Limiting Reagent,
According to Balance equation,
2 moles NBr₃ reacts with = 3 moles of NaOH
So,
40 moles of NBr₃ will react with = X moles of NaOH
Solving for X,
X = (40 mol × 3 mol) ÷ 2 mol
X = 60 mol of NaOH
It means 40 moles of NBr₃ requires 60 moles of NaOH, while we are provided with 48 moles of NaOH which is Limited. Therefore, NaOH is the limiting reagent and will control the yield of products. And NBr₃ is in excess as some of it is left due to complete consumption of NaOH.
Answer:
0.1 M
<h3>
Explanation:</h3>
- Molarity refers to the concentration of a solution in moles per liter.
- It is calculated by dividing the number of moles of solute by the volume of solvent;
- Molarity = Moles of the solute ÷ Volume of the solvent
<u>In this case, we are given;</u>
- Number of moles of the solute, NH₄Cl as 0.42 moles
- Volume of the solvent, water as 4200 mL or 4.2 L
Therefore;
Molarity = 0.42 moles ÷ 4.2 L
= 0.1 mol/L or 0.1 M
Thus, the molarity of the solution will be 0.1 M
Answer:
The answer to your question is:
Explanation:
Data
carbon 7.3% = 7.3g
hydrogen 4.5% = 4.5g
oxygen 36.4% = 36.4 g
nitrogen 31.8% = 31.8 g
Now
For carbon
12 g --------------------1 mol
7.3 g ------------- x
x = 7.3/12 = 0.608 mol
For hydrogen
1 g -------------------- 1 mol
4.5 g ------------------ x
x = 4.5 mol
For oxygen
16 g ------------------- 1 mol
36.4 g ---------------- x
x = 2.28 mol
For nitrogen
14 g ---------------- 1 mol
31.8 g --------------- x
x = 2.27 mol
Now divide by the lowest result, the is 0.608 from carbon
carbon 0.608/0.608 = 1
hydrogen 4.5/ 0.608 = 7.4
oxygen 2.28/0.608 = 3.75
nitrogen 2.27/0.608 = 3.73
Empirical formula = CH₇O₄N₄
Answer:
did you have options, cause if you did chose something alond the lines of
Explanation:
A real gas is a gas that does not behave as an ideal gas due to interactions between gas molecules. A real gas is also known as a nonideal gas because the behavior of a real gas in only approximated by the ideal gas law.
Answer:
Force used by fire extinguisher = 60 N
Explanation:
Given:
Mass of skateboard with fire extinguisher = 50 kg
Acceleration of fire extinguisher = 1.2 m/s²
Find:
Force used by fire extinguisher = ?
Computation:
⇒ Force = Mass × Acceleration
⇒ Force used by fire extinguisher = Mass of skateboard with fire extinguisher × Acceleration of fire extinguisher
⇒ Force used by fire extinguisher = 50 kg × 1.2 m/s²
⇒ Force used by fire extinguisher = 60 N