<span>I’ve answered this
question before so if these are the choices to the question presented:
An oxygen atom double-bonded to a carbon atom, with a hydrogen atom
single-bonded to the same carbon atom. </span><span>
<span>A hydrogen atom covalently bonded to an oxygen atom, which is
covalently bonded to a carbon in the carbon chain. </span>
<span>A carbon atom single-bonded between two other carbon atoms,
with an oxygen atom double-bonded to the central carbon atom as well. </span>
<span>An oxygen atom single-bonded between two carbon atoms within
a carbon chain.
Then, the answer would be “a hydrogen atom covalently bonded to an oxygen atom,
which is covalently bonded to a carbon in the carbon chain.<span>”</span></span></span>
Explanation:
When there occurs sharing of electrons between two chemically combining atoms then it forms a covalent bond. Generally, a covalent bond is formed between two non-metals.
An ionic bond is defined as the bond formed due to transfer of one or more number of electrons from one atom to another. An ionic bond is always formed between a metal and a non-metal.
Every atom of an element will have orbitals in which electrons are found. These orbitals are known as energy level.
A molecule is defined as the smallest particle present in a substance or atom.
A metallic bond is formed due to mobile valence electrons shared by positive nuclei in a metallic crystal.
Thus, we can conclude that given statements are correctly matched as follows.
1). a chemical bond formed by the electrostatic attraction between ions - ionic bond
2). a chemical bond formed by two electrons that are shared between two atoms - covalent bond
3). the orbitals of an atom where electrons are found - energy level
4). the smallest particle of a covalently bonded substance - molecule
5). a bond characteristic of metals in which mobile valence electrons are shared among positive nuclei in the metallic crystal - metallic bond
Carbon is the answer. all hydrocarbures have to contain carbon.
Answer:
1.98x10⁻¹² kg
Explanation:
The <em>energy of a photon</em> is given by:
h is Planck's constant, 6.626x10⁻³⁴ J·s
c is the speed of light, 3x10⁸ m/s
and λ is the wavelenght, 671 nm (or 6.71x10⁻⁷m)
- E = 6.626x10⁻³⁴ J·s * 3x10⁸ m/s ÷ 6.71x10⁻⁷m = 2.96x10⁻¹⁹ J
Now we multiply that value by <em>Avogadro's number</em>, to <u>calculate the energy of 1 mol of such protons</u>:
- 1 mol = 6.023x10²³ photons
- 2.96x10⁻¹⁹ J * 6.023x10²³ = 1.78x10⁵ J
Finally we <u>calculate the mass equivalence</u> using the equation:
- m = 1.78x10⁵ J / (3x10⁸ m/s)² = 1.98x10⁻¹² kg