Answer:w=mxg
2x10 =20 N
Explanation:force acting downwards is mg mass into gravitional feild
Answer:
The answer to your question is:
a) t1 = 2.99 s ≈ 3 s
b) vf = 39.43 m/s
Explanation:
Data
vo = 10 m/s
h = 74 m
g = 9.81 m/s
t = ? time to reach the ground
vf = ? final speed
a) h = vot + (1/2)gt²
74 = 10t + (1/2)9.81t²
4.9t² + 10t -74 = 0 solve by using quadratic formula
t = (-b ± √ (b² -4ac) / 2a
t = (-10 ± √ (10² -4(4.9(-74) / 2(4.9)
t = (-10 ± √ 1550.4 ) / 9.81
t1 = (-10 + √ 1550.4 ) / 9.81 t2 = (-10 - √ 1550.4 ) / 9.81
t1 = (-10 ± 39.38 ) / 9.81 t2 = (-10 - 39.38) / 9.81
t1 = 2.99 s ≈ 3 s t2 = is negative then is wrong there are
no negative times.
b) Formula vf = vo + gt
vf = 10 + (9.81)(3)
vf = 10 + 29.43
vf = 39.43 m/s
Answer:
θ = sin⁻¹
Explanation:
From one of the equations of motion, v² = u² + 2as.......... equation 1
Since the object thrown was moving against gravity, then the acceleration, a would change to -g and the initial velocity u would change to V₀ sin θ because the object is travelling at angle of θ to the horizontal. By inputting all these parameter into equation 1, we would arrive at:
v² = (u sin θ)² - 2gd
(u sin θ)² = 2gd
d = (u sin θ)²/2g
sin² θ = 2gd
sin θ = 
θ = sin⁻¹ 
Answer:
1)Observe a phenomenon
2)Ask a question/ start inferring
3)Form a hypothesis
4)Create an experiment
5)Collect data
6)Compare results
7)Analyze
8)Report findings
9)Compare with other experiments