Answer:
Explanation:
Particles in all states of matter are in constant motion and this is very rapid at room temperature. A rise in temperature increases the kinetic energy and speed of particles; it does not weaken the forces between them. The particles in solids vibrate about fixed positions; even at very low temperatures.
Even with all of these state changes, it is important to remember that the substance stays the same—it is still water, which consists of two hydrogen atoms and one oxygen atom. Changing states of matter are only physical changes; the chemical properties of the matter stays the same regardless of its physical state!
Answer:
1.97 * 10^8 m/s
Explanation:
Given that:
n = 1.52
Recall : speed of light (c) = 3 * 10^8 m/s
Speed (v) of light in glass:
v = speed of light / n
v = (3 * 10^8) / 1.52
v = 1.9736 * 10^8
Hence, speed of light in glass :
v = 1.97 * 10^8 m/s
Let the cold water go up x degrees.
Let the hot water go down 100 - x degrees.
The formula for heat exchange is m*c*delta t
Givens
Ice
deltat = x
m = 0.50 kg
c = 4.18
Hot water
deltat = 100 - x
m = 1.5 kg
c = 4.18
Formula
The heat up = heat down
0.50 * c * x = 1.5 * c * (100 - x) Divide both sides by c
Solution
0.50 *x = 1.5*(100 - x) Remove the brackets.
0.5x = 150 - 1.5x Add 1.5x to both sides.
0.5x + 1.5x = 150 - 1.5x + 1.5x Combine like terms
2x = 150 Divide by 2
x = 75
Answer
A
Answer:
10N
Explanation:
Equation: ΣF = ma
Fapp = ma
Fapp = (2kg)(5m/s^2) (im guessing you mean 5.00 m/s^2 not m/s)
Fapp = 10*kg*m/s^2
Fapp = 10N
Evaporation (or another word to use is water vapor.)