Answer:
The displacement in t = 0,
y (0) = - 0.18 m
Explanation:
Given f = 40 Hz , A = 0.25m , μ = 0.02 kg / m, T = 20.48 N
v = √ T / μ
v = √20.48 N / 0.02 kg /m = 32 m/s
λ = v / f
λ = 32 m/s / 40 Hz = 0.8
K = 2 π / λ
K = 2π / 0.8 = 7.854
φ = X * 360 / λ
φ = 0.5 * 360 / 0.8 = 225 °
Using the model of y' displacement
y (t) = A* sin ( w * t - φ )
When t = 0
y (0) = 0.25 m *sin ( w*(0) - 225 )
y (0) = 0.25 * -0.707
y (0) = - 0.18 m
This implies that stopping distance and impact force grow as a function of speed. The best ways to improve manoeuvrability and lessen crash severity are to drive at an appropriate pace and to slow down as soon as you spot dangers in front of you.
Keep in mind that stopping distance increases with speed; at 50 mph, it is four times longer than at 25 mph, and at 75 mph, the force of impact is nine times greater.
<h3>What is the impact of speed on kinetic energy ?</h3>
When your car expends or absorbs energy to speed up or slow down, you may feel a pull or a jolt, called impulse. Impulse increases as the energy or force increases, and increases as the duration of the force decreases. You'll feel a harder jolt if you speed up or slow down suddenly.
- Consider: coming to a stop from 60 mph in ten seconds doesn't hurt you or your vehicle because the force of this event is spread out over a long time. But if you hit a wall and come to a stop in just half a second, you'll feel twenty times the impulse, causing severe damage.
Learn more about Kinetic energy here:
brainly.com/question/25959744
#SPJ4
Answer:
B. - 0.328
Explanation
Potential Energy:<em> This is the energy of a body due to position.</em>
<em>The S.I unit of potential energy is Joules (J).</em>
<em>It can be expressed mathematically as</em>
<em>Ep = mgh........................... Equation 1</em>
<em>Where Ep = potential energy, m = mass of the coin, h = height, g = acceleration due to gravity,</em>
<em>Given: m = 2.74 g = 0.00274 kg, h = 12.2 m, g = 9.8 m/s²</em>
Substituting these values into equation 1
Ep = 0.00274×12.2×9.8
Ep = 0.328 J.
Note: Since the potential energy at the surface is zero, the potential Energy with respect to the surface = -0.328 J
The right option is B. - 0.328
<em />
Answer:
a) 1450watts
b) 564watts
c) 1.11
Explanation:
Power consumed = IV
I is the current rating
V is the operating voltage
If a blow-dryer and a vacuum cleaner each operate with a voltage of 120 V and the current rating of the blow-dryer is 12 A, while that of the vacuum cleaner is 4.7 A then their individual power rating is calculated thus;
a) For blow-dryer
Operating voltage = 120V
Its current rating = 12A
Power consumed = IV
= 120×12
= 1440watts
b) For vacuum cleaner:
Operating voltage is the same as that of blow dryer = 120V
Its current rating = 4.7A
Power consumed = IV
= 120×4.7
= 564watts
c) Energy used = Power consumed × time taken
Energy used = Power × time
Energy used by blow dryer = 1440×20×60
= 1,728,000Joules
Energy used up by vacuum cleaner = 564×46×60
= 564×2760
= 1,556,640Joules
Ratio of the energy used by the blow-dryer in 20 minutes to the energy used by the vacuum cleaner in 46 minutes will be 1,728,000/1,556,640 = 1.11
Answer:
I do not have enough information to tell
Explanation:
This is deduced due to the fact that if the net force due to B and C on A is zero, the charges on B and C could either be positive or negative depending on the charge on A.