Answer:
d = 90 ft
Explanation:
As we know that after each bounce it reaches to 4/5 times of initial height
so we can say

so the distance covered is given as

here we know that
h = 10 feet



Because glucerin is hotter so it decreases faster
Answer: 8 meters per second
Explanation: If you add 60 to 20 you get 80 meters and since he ran those 80 meters in 10 seconds you divide 80 by ten and get 8 and then you get 8m/s
<h2>
Answer: 277.777 m</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told that the rock was<u> projected upward from the surface</u>, we will only use the equations related to the Y axis.
In this sense, the movement equations in the Y axis are:
(1)
(2)
Where:
is the rock's final position
is the rock's initial position
is the rock's initial velocity
is the final velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of the moon
As we know
, equation (2) is rewritten as:
(3)
On the other hand, the maximum height is accomplished when
:
(4)
(5)
Finding
:
(6)
Substituting (6) in (3):
(7)
(8) Now we can calculate the maximum height of the rock
(9)
Finally:
Answer:
Sound waves are reflected back