Answer:
A saturated solution
Explanation:
A saturated solution is one that contains the most amount of solute that can be dissolved in it at a given temperature
An example of a saturated solution is carbonated water, which readily gives off bubbles of carbon dioxide gas from areas within the solution to the region above the top surface of the gas in liquid solution
A saturation solution of salt in water can be created by continuing to dissolve salt in a given amount of water until it can no longer dissolve any more salt. However, heating the saturated salt solution, increases the amount of salt that can be dissolved.
Therefore, a solution that contains all of the solute it can normally hold at a given temperature is <u>a saturated solution</u>
Answer:
true
Explanation:
as long as you are interested, you are happy
Answer: An ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance. Similarly, an ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter.
Explanation: To find the answer, we need to know about the Ammeter and Voltmeter.
<h3>What is an ammeter?</h3>
- An ammeter is a device, that can be used to measure the electric current flows through a circuit in amperes.
- An ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance when it is connected in series to measure the current.
<h3>What is voltmeter?</h3>
- A voltmeter is a device, that can be used to measure the electric potential difference generated between the terminals of an electric circuit in volts.
- An ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter, when it is connected in parallel to measure the voltage.
Thus, we can conclude that, an ideal ammeter would have zero resistance, because to ensure that, there is no voltage drop due to the internal resistance. Similarly, an ideal voltmeter would have infinite resistance, because to ensure that there is no current is drawn by the voltmeter.
Learn more about the ammeter and voltmeter here:
brainly.com/question/28044897
#SPJ4
Answer:
The mass of the beam is 0.074 kg
Explanation:
Given;
length of the uniform bar, = 1m = 100 cm
Set up this system with the given mass and support;
0-----------------33cm-----------------------------------100cm
↓ Δ ↓
0.15kg m
Where;
m is mass of the uniform bar
Apply the principle of moment to determine the value of "m"
sum of anticlockwise moment = sum of clockwise moment
0.15kg(33 - 0) = m(100 - 33)
0.15(33) = m(67)

Therefore, the mass of the beam is 0.074 kg