Answer:
a = 0.009 J
b = 0.19 m/s
c = 0.005 J and 0.004 J
Explanation:
Given that
Mass of the object, m = 0.5 kg
Spring constant of the spring, k = 20 N/m
Amplitude of the motion, A = 3 cm = 0.03 m
Displacement of the system, x = 2 cm = 0.02 m
a
Total energy of the system, E =
E = 1/2 * k * A²
E = 1/2 * 20 * 0.03²
E = 10 * 0.0009
E = 0.009 J
b
E = 1/2 * k * A² = 1/2 * m * v(max)²
1/2 * m * v(max)² = 0.009
1/2 * 0.5 * v(max)² = 0.009
v(max)² = 0.009 * 2/0.5
v(max)² = 0.018 / 0.5
v(max)² = 0.036
v(max) = √0.036
v(max) = 0.19 m/s
c
V = ±√[(k/m) * (A² - x²)]
V = ±√[(20/0.5) * (0.03² - 0.02²)]
V = ±√(40 * 0.0005)
V = ±√0.02
V = ±0.141 m/s
Kinetic Energy, K = 1/2 * m * v²
K = 1/2 * 0.5 * 0.141²
K = 1/4 * 0.02
K = 0.005 J
Potential Energy, P = 1/2 * k * x²
P = 1/2 * 20 * 0.02²
P = 10 * 0.0004
P = 0.004 J
Answer:
Because of the frictional force, the net force will oppose direction of the block and be directed towards the left even tho the spring exerts no force at this point
Answer:
h = 51020.40 meters
Explanation:
Speed of the rifle, v = 1000 m/s
Let h is the height gained by the bullet. It can be calculated using the conservation of energy as :


h = 51020.40 meters
So, the bullet will get up to a height of 51020.40 meters. Hence, this is the required solution.
Which picture are you talking about?
Answer:
a
Explanation:
<u>In order to maintain speed, a moving object or person must move at a constant velocity</u>. Accelerating will increase the speed while decelerating will reduce the speed.
Hence, for Bolt to be able to maintain the top speed for a few seconds, he needs to move at a constant velocity.
The correct option is a.