The range of force exerted at the end of the rope is 285.7 N to 1,000 N.
<h3>Net horizontal force of the cylinder</h3>
The net horizontal force of the cylinder when it is at equilibrium position is determined by applying Newton's second law of motion.
∑F = 0
F - μFn = 0
F - 0.2(5,000) = 0
F - 1,000 = 0
F = 1,000 N
The strength of the applied force increases as the number of turns of the rope increases.
minimum force = total force/number of turns of rope
minimum force = 1,000/3.5
minimum force = 285.7 N
Thus, the range of force exerted at the end of the rope is 285.7 N to 1,000 N.
Learn more about Newton's second law of motion here: brainly.com/question/3999427
(c) as the change in the dependent variable is in direct CORRELATION to the change in the independent variable.
Answer:
D I think I might be wrong its been a while scense I did something like that
Answer: Melting
Explanation:
When Frieda made a pyramid of marshmallows, she was representing the atoms in a solid substance as the atoms are clumped together and unable to move.
When she then knocks it down, she is showing the movement of atoms in a liquid substance as they are now freer than they were before. The process by which substances go from solid to liquid is melting.