Answer:
8.85m/s
Explanation:
The potential energy the watermelon held before dropping is Ep=mgh=2*9.8*4=78.4J.
When it strikes the ground, all of its Ep will transfer into Ek, so 1/2*m*v^2=78.4.
We already knew that m=2, so insert that in, we will get the V^2=78.4 m/s, V=8.85 m/s
Answer:
the one with a higher mass
Explanation:
The body with more mass will have the greater kinetic energy of the two.
Kinetic energy is the energy due to the motion of body. It is mathematically expressed as:
K.E = m v²
m is the mass
v is the velocity
Since the velocity of the two bodies are the same, and mass is directly proportional to kinetic energy, the body with more mass will have a higher kinetic energy.
So between mass m1 and mass m2, the one with a greater mass will have a higher kinetic energy
This question sounds like it came after some activity where
some forces were observed. Since we were not there, and
we don't know what the activity was, we don't know what forces
were observed, and we have no clue to how they might be related
to the motion of the Earth around the sun.
Answer:
Most familiar are surface waves on water, but both sound and light travel as wavelike disturbances, and the motion of all subatomic particles exhibits wavelike properties
Explanation:
Forces are balanced when net force on the object is zero or the sum of all force on the object is zero.
For book kept on a shelf, the weight of the book in down direction is balanced by the normal force on the book by the shelf. hence the book kept on a shelf is an example of balanced force.
In case of air rushing out of balloon , the balloon experience a net force by the air coming out of it.
rolling over and falling off the bed , the object falls under gravity force.
a car speeding up accelerates. since it accelerates , it has net force on it.