Answer: Speed = 4 m/s
Explanation:
The parameters given are
Mass M = 60 kg
Height h = 0.8 m
Acceleration due to gravity g= 10 m/s2
Before the man jumps, he will be experiencing potential energy at the top of the table.
P.E = mgh
Substitute all the parameters into the formula
P.E = 60 × 9.8 × 0.8
P.E = 470.4 J
As he jumped from the table and hit the ground, the whole P.E will be converted to kinetic energy according to conservative of energy.
When hitting the ground,
K.E = P.E
Where K.E = 1/2mv^2
Substitute m and 470.4 into the formula
470.4 = 1/2 × 60 × V^2
V^2 = 470.4/30
V^2 = 15.68
V = square root (15.68)
V = 3.959 m/s
Therefore, the speed of the man when hitting the ground is approximately 4 m/s
Answer: The original temperature was

Explanation:
Let's put the information in mathematical form:





If we consider the helium as an ideal gas, we can use the Ideal Gas Law:

were <em>R</em> is the gas constant. And <em>n</em> is the number of moles (which we don't know yet)
From this, taking
, we have:
⇒
Now:
⇒
If a body p with a positive charge is placed in contact with a body q (initially uncharged), then the nature of charge gained by q must be positive, because rubbing an uncharged body with a charged body or placed in contact with a positive charged body, helps gain a charge to the uncharged body.
There are a variety of methods to charge an object. One method is known as induction. In the induction process, a charged object is brought near but not touched to a neutral conducting object.
Let's know, how a element gain positive charge?
A positive charge occurs when the number of protons exceeds the number of electrons. A positive charge may be created by adding protons to an atom or object with a neutral charge. A positive charge also can be created by removing electrons from a neutrally charged object.
To learn more about Positive charge here
brainly.com/question/2903220
#SPJ4
Explanation:
The height of the rise of liquid with capillary tube is given by the formula as follows :

Where
r is radius
It is clear that the height of the rise of liquid is inversely proportional to the radius of the capillary tube.
If the radius of the capillary tube is doubled, it means the height of rise of liquid with capillary tube become half.