The moment of inertia is 
Explanation:
The total moment of inertia of the system is the sum of the moment of inertia of the rod + the moment of inertia of the two balls.
The moment of inertia of the rod about its centre is given by

where
M = 24 kg is the mass of the rod
L = 0.96 m is the length of the rod
Substituting,

The moment of inertia of one ball is given by

where
m = 50 kg is the mass of the ball
is the distance of each ball from the axis of rotation
So we have

Therefore, the total moment of inertia of the system is

Learn more about inertia:
brainly.com/question/2286502
brainly.com/question/691705
#LearnwithBrainly
We begin by noting that the angle of incidence is the one that's taken with respect to the normal to the surface in question. In this case the angle of incidence is 30. The material is Flint Glass according to the original question. The refractive indez of air n1=1, the refractive index of red in flint glass is nred=1.57, finally for violet in the glass medium is nviolet=1.60. Snell's Law dictates:

Where

differs for each wavelenght, that means violet and red will have different refractive indices in the glass.
In the second figure provided details are given on which are the angles in question,

is the distance between both rays.


At what distance d from the incidence normal will the beams land at the bottom?
For violet we have:

For red we have:

We finally have:
There is a repulsive force between two charged objects when they are of like charges/ they are likely charged (like charges repel each other)