A) change in ht after 180m = 180 * sin(4-deg.) = 12.56m
net work done by gravity on the cyclist = mass * gravity * height diff.
= 85 * 9.8 * 12.56
= 10470J
= 10.5kJ
B) Kinetic energy = 1/2 * mass * vel.^2 = work done by gravity = 10470J
vel.^2 = 10470 * 2 / 85 = 246.4
vel. = 15.7m/s
Answer:
(e)
Explanation:
At resonance we know that 
That is 



We have given resonance frequency f =4511 Hz and inductance L=1.82 mH
So 



So option e is the correct answer
Answer: See below
Explanation:
The Earth attracts the falling object with the same intensity of gravity as the object attracts the Earth, according to Newton's law of gravitation. The displacement of the two bodies, however, is inversely proportional to their respective masses.
Example: The Earth attracts a ball that falls 3 metres from the ground, even though the ball's mass is insignificant in comparison to the Earth's. Similarly, the ball draws the Earth with the same power, but the Earth's mass is enormously more than the ball's. As a result, the Earth collides with a billionth of a millimetre ball (or even less). Restart the Earth's descent on the ball you'll never see again.
|-----------|
| ANSWERED |
| BY |
| SHORTHAX |
|-----------|
(\__/) ||
(•ㅅ•) ||
/ づ
Answer:
C. 8.4 × 10^2 volts
Explanation:
The potential energy of a charge is given by:

where
q is the magnitude of the charge
V is the electric potential
In this problem, we have
is the charge
is the potential energy
Re-arranging the formula and using these numbers, we can find the electric potential:

I think its a higher frequency