Answer:
Taking as a basis of calculation 100 mol of gas leaving the conversion reactor, draw andcompletely label a flowchart of this process. Then calculate the moles of fresh methanol feed,formaldehyde product solution, recycled methanol, and absorber off-gas, the kg of steamgenerated in the waste-heat boiler, and the kg of cooling water fed to the heat exchangerbetween the waste-heat boiler and the absorber. Finally, calculate the heat (kJ) that must beremoved in the distillation column overhead condenser, assuming that methanol enters as asaturated vapor at 1 atm and leaves as a saturated liquid at the same pressure.
1
SEE ANSWER
Explanation:
Answer:
The pressure reduces to 2.588 bars.
Explanation:
According to Bernoulli's theorem for ideal flow we have

Since the losses are neglected thus applying this theorm between upper and lower porion we have

Now by continuity equation we have

Applying the values in the Bernoulli's equation we get

Answer:
- <em><u> Land, labor, and capital </u></em>
Explanation:
The <em>factors of production </em>are the resources that are used to produce goods and services.
By definition resources are scarce.
<em>Land</em> includes everything that comes from the land, that can be used as raw material to produce other materials; for instance, water, minerals, wood.
<em>Labor</em> is the work done by anybody, not just at a factory but at any enterpise that produce a good or a service. For instance, the work done by a person in a bank or a restaurant.
<em>Capital</em> is the facilites (buildings), machinery, equipments, tools that the persons use to produce goods or services. For instance, a computer, a chemical reactor, or a pencil.
Nowadays, also entrepreneurship is included as a <em>factor of production</em>, since it is the innovative skill of the entrepeneurs to combine land, labor and capital what permit the production of good and services.
Answer:
a) 159.07 MPa
b) 10.45 MPa
c) 79.535 MPa
Explanation:
Given data :
length of cantilever beam = 1.5m
outer width and height = 100 mm
wall thickness = 8mm
uniform load carried by beam along entire length= 6.5 kN/m
concentrated force at free end = 4kN
first we determine these values :
Mmax = ( 6.5 *(1.5) * (1.5/2) + 4 * 1.5 ) = 13312.5 N.m
Vmax = ( 6.5 * (1.5) + 4 ) = 13750 N
A) determine max bending stress
б =
=
= 159.07 MPa
B) Determine max transverse shear stress
attached below
ζ = 10.45 MPa
C) Determine max shear stress in the beam
This occurs at the top of the beam or at the centroidal axis
hence max stress in the beam = 159.07 / 2 = 79.535 MPa
attached below is the remaining solution