B. water remained a gas because earth was very hot
Let's start by using the definition of acceleration. Acceleration is defined as the change in velocity over the change in time. In equation, that would be Δvelocity/Δtime. Based on the axes of the given graph, it shows the trend of position over time. So, the slope of the line and the curve shows the change of position over change of time, Δdistance/Δtime. In physics, this is the definition of speed or velocity. So, Maia is incorrect. Both curves show the speed or velocity of the object, and not acceleration. If the graph used a y-axis of velocity instead of position, then only at that instance, would be Maia be correct.
The difference between the two is, the straight line shows constant velocity while the curve line shows changing velocity.
To determine the Keq, we need the chemical reaction in the system. In this case it would be:
CO + 2H2 = CH3OH
The Keq is the ration of the amount of the product and the reactant. We use the ICE table for this. We do as follows:
CO H2 CH3OH
I .42 .42 0
C -0.13 -2(0.13) 0.13
-----------------------------------------------
E = .29 0.16 0.13
Therefore,
Keq = [CH3OH] / [CO2] [H2]^2 = 0.13 / 0.29 (0.16^2)
Keq = 17.51
Answer:
450.0 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and T are constant, and have different values of P and V:
<em>(P₁V₁) = (P₂V₂).</em>
<em></em>
V₁ = 760.0 L, P₁ = 450.0 mm Hg,
V₂ = ??? L, P₂ = 760.0 mm Hg (standard pressure = 1.0 atm = 760 mm Hg).
∴ V₂ = (P₁V₁)/(P₂) = (760.0 L)(450.0 mm Hg)/(760.0 mm Hg) = 450.0 L.
Carbon is 12 grams per mole