Answer:
Explanation:
Ksp(BaSO4)=1.07×10−10
BaSO₄ → Ba²⁺ + SO₄²⁻
1.07×10⁻¹⁰ = ( Ba²⁺) × ( SO₄²⁻)
but Ba²⁺ = 1.3×10⁻² M
1.07×10⁻¹⁰ = 1.3×10⁻² M × ( SO₄²⁻)
( SO₄²⁻) = 1.07×10⁻¹⁰ / 1.3×10⁻² = 0.823 × 10⁻⁸ M
while Ksp(CaSO4)=7.10×10−5
CaSO₄ → Ca²⁺ + SO₄²⁻
7.10×10⁻⁵ = 2.0×10⁻² × ( SO₄²⁻)
( SO₄²⁻) = 7.10×10⁻⁵ / 2.0×10⁻² = 3.55 × 10⁻³ M
comparing the concentration of sulfate ions, Ba²⁺ cation will precipitate first because the Ba²⁺ requires 0.823 × 10⁻⁸ M sodium sulfate which less compared the about needed by CaSO₄
Answer:
We know that
ħf = ф + Ekmax
where
ħ = planks constant = 6.626x10^-34 J s
f = frequency of incident light = 1.3x10^15 /s (1 Hz =
1/s)
ф = work function of the cesium = 2.14 eV
Ekmax = max kinetic energy of the emmitted electron.
We distinguish that:
1 eV = 1.602x10^-19 J
So:
2.14 eV x (1.602x10^-19 J / 1 eV) = 3.428x10^-19 J
So,
Ekmax = (6.626x10^-34 J s) x (1.3x10^15 / s) - 3.428x10^-19 J
= 8.6138x10^-19 J - 3.428x10^-19 J = 5.1858x10^-19 J
Answer:
5.19x10^-19 J
Kinetic energy:
In physics, the kinetic energy of an object is the energy that it owns due to its motion. It is defined as the work required accelerating a body of a given mass from rest to its specified velocity. Having expanded this energy during its acceleration, the body upholds this kinetic energy lest its speed changes.
Answer details:
Subject: Chemistry
Level: College
Keywords:
• Energy
• Kinetic energy
• Kinetic energy of emitted electrons
Learn more to evaluate:
brainly.com/question/4997492
brainly.com/question/4010464
brainly.com/question/1754173
Answer:
- <u>Tellurium (Te) and iodine (I) are two elements </u><em><u>next to each other that have decreasing atomic masses.</u></em>
Explanation:
The <em>atomic mass</em> of tellurium (Te) is 127.60 g/mol and the atomic mass of iodine (I) is 126.904 g/mol; so, in spite of iodine being to the right of tellurium in the periodic table (because the atomic number of iodine is bigger than the atomic number of tellurium), the atomic mass of iodine is less than the atomic mass of tellurium.
The elements are arranged in increasing order of atomic number in the periodic table.
The atomic number is equal to the number of protons and the mass number is the sum of the protons and neutrons.
The mass number, except for the mass defect, represents the atomic mass of a particular isotope. But the atomic mass of an element is the weighted average of the atomic masses of the different natural isotopes of the element.
Normally, as the atomic number increases, you find that the atomic mass increases, so most of the elements in the periodic table, which as said are arranged in icreasing atomic number order, match with increasing atomic masses. But the relative isotope abundaces of the elements can change that.
It is the case that the most common isotopes of tellurium have atomic masses 128 amu and 130 amu, whilst most common isotopes of iodine have an atomic mass 127 amu. As result, tellurium has an average atomic mass of 127.60 g/mol whilst iodine has an average atomic mass of 126.904 g/mol.
Sugar is a nonconductor. When it dissolves into water it dissolves as a covalent molecule. As a covalent molecule it does not conduct electricity in the way that ionic compounds like salt would.